The Art of Reading

How do I get the most out of this research paper?

Aaron Stump Computer Science The University of Iowa

"I like books. Have you read A Game of Thrones?"

"I like books. Have you read A Game of Thrones?"

"I am a coder. Does reading code count?"

"I like books. Have you read A Game of Thrones?"

"I am a coder. Does reading code count?"

"I have tried reading papers, but it is pretty awful."

"I like books. Have you read A Game of Thrones?"

"I am a coder. Does reading code count?"

"I have tried reading papers, but it is pretty awful."

"I am too busy writing papers to read them."

"I like books. Have you read A Game of Thrones?"

"I am a coder. Does reading code count?"

"I have tried reading papers, but it is pretty awful."

"I am too busy writing papers to read them."

"I hope I can finish all these papers so I can start research!"

"I like books. Have you read A Game of Thrones?"

"I am a coder. Does reading code count?"

"I have tried reading papers, but it is pretty awful."

"I am too busy writing papers to read them."

"I hope I can finish all these papers so I can start research!"

Add your own!

- ▶ As educated people, read on many topics (history, culture, etc.)
- > As researchers, we need to read **papers**
 - Learn!
 - Advanced material rarely in textbooks
 - Be able to cite previous related work
 - Reading code can also be good but papers key
- But we cannot know everything...

- ▶ As educated people, read on many topics (history, culture, etc.)
- > As researchers, we need to read papers
 - Learn!
 - Advanced material rarely in textbooks
 - Be able to cite previous related work
 - Reading code can also be good but papers key
- But we cannot know everything...

- ▶ As educated people, read on many topics (history, culture, etc.)
- > As researchers, we need to read papers
 - Learn!
 - Advanced material rarely in textbooks
 - Be able to cite previous related work
 - Reading code can also be good but papers key
- But we cannot know everything...

- ▶ As educated people, read on many topics (history, culture, etc.)
- > As researchers, we need to read papers
 - Learn!
 - Advanced material rarely in textbooks
 - Be able to cite previous related work
 - Reading code can also be good but papers key
- But we cannot know everything...

But how do I do it?

But how do I do it?

But how do I do it?

Completely digest every detail?

Completely digest every detail?

Strengthen your core knowledge?

- Completely digest every detail?
- Strengthen your core knowledge?
- ▷ Explore a new direction?

- Completely digest every detail?
- Explore a new direction?
- Assess the contribution?

- Completely digest every detail?
- Explore a new direction?
- Assess the contribution?
- ▶ Relate to your own work?

Kinds of reading

- Reading for evaluation/assessment
 - Reviewing a paper
 - Reading competing work
 - Literature review (your comps!)

- Reading for core knowledge
 - Work directly relevant for your research
 - Background material for your area (e.g., some field of math)
- Exploratory reading
 - What was that crazy paper at Top Conference about?
 - Is there anything to this cryptocurrency stuff?
 - Subfield X seems to use related techniques to mine.

Three Reading Adventures

A Framework for Defining Logics

ROBERT HARPER

Carnegie-Mellon University, Pittsburgh, Pennsylvania

FURIO HONSELL

Università di Udine, Udine, Italy

AND

GORDON PLOTKIN

Edinburgh University, Edinburgh, United Kingdom

Abstract. The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, nules, and proofs by means of a typed \(^1\)-calculus with dependent types. Syntax is treated in a style similar to, but more general than, Martin-Lof's system of artists. The treatment of rules and proofs focuses on his notion of a judgment. Togics are represented in LF via a new principle, the judgments as types principle, whereby each judgment is delentified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higher-order judgments and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logic-independent tools, such as proof editors and proof checkers, can be constructed.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Formal systems, interactive theorem proving, proof checking, typed lambda calculus

A Framework for Defining Logics

ROBERT HARPER

Carnegie-Mellon University, Pittsburgh, Pennsylvania

FURIO HONSELL

Università di Udine, Udine, Italy

AND

GORDON PLOTKIN

Edinburgh University, Edinburgh, United Kingdom

Abstract. The Edinburgh Logical Framework (LF) provilt is based on a general treatment of syntax, rules, and pridependent types. Syntax is treated in a style similar t system of arities. The treatment of rules and proofs for are represented in LF via a new principle, the judg indoment is identified with the twoe of its proofs. This all

and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higher-order judgments and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logic-independent tools, such as proof editors and proof checkers, can be constructed.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Formal systems, interactive theorem proving, proof checking, typed lambda calculus

▶ JACM 1993 paper, 1700 citations

- 42 pages long
- Suffered through for about 1 year as an early doctoral student
 - Lacked knowledge of conventions
 - Paper also tough reading

Infinitary Logics

- I got curious about "logics" with infinite formulas
 - Infinite branching reasonably well understood
 - Infinitely deep much less studied
- Deep dive in the library, including Finnish dissertations
- Wrote this up on my blog after the dust settled:

```
https://queuea9.wordpress.com/2012/07/12/infinitary-logics/
```

Writing a summary of what you read!

Treasured friends

However obscure the venue However ignored or neglected Some works seem to befriend you Now enlightened, enriched, and corrected

- ▶ Henk Barendregt, "Lambda Calculi with Types", Handbook of Logic in CS, 1993

To conclude

- Reading is an art
 - What should I read?
 - How? (evaluation, core knowledge, exploratory)
- You will improve with practice
- Your research will benefit

Take your place in the company of educated men and women throughout the ages!