
Equality, Quasi-Implicit Products, and Large Eliminations
Vilhelm Sjöberg

Computer and Information Science
University of Pennsylvania

vilhelm@cis.upenn.edu

Aaron Stump
Computer Science

The University of Iowa
astump@acm.org

Abstract

This paper presents a type theory with a form of equality reflection: provable equalities can be
used to coerce the type of a term. Coercions and other annotations, including implicit arguments,
are dropped during reduction of terms. We develop the metatheory for an undecidable version of the
system with unannotated terms. We then devise a decidable system with annotated terms, justified in
terms of the unannotated system. Finally, we show how the approach can be extended to account for
large eliminations, using what we call quasi-implicit products.

1 Introduction

The main goal of this paper, as of several recent works, is to facilitate external reasoning about depen-
dently typed programs [8, 2]. This is hampered if one must reason about specificational data occurring in
terms. For example, consider the familiar example of vectors 〈vec φ l〉 indexed by both the type φ of the
elements and the length l of the vector. An example dependently typed program is the appendφ function
(we work here with monomorphic functions, but will elide type subscripts), operating on vectors holding
data of type φ . We can define append so that it has the following type, assuming a standard definition of
plus on unary natural numbers nat:

append : Πl1 : nat.Πl2 : nat.Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉. 〈vec φ (plus l1 l2)〉

We might wish to prove that append is associative. In type theories such as COQ’s Calculus of Inductive
Constructions, we would do this by showing that the following type is inhabited:

Πl1 : nat.Πl2 : nat.Πl3 : nat.Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append (plus l1 l2) l3 (append l1 l2 v1 v2) v3) = (append l1 (plus l2 l3) v1 (append l2 l3 v2 v3))

Notice how the lengths of the vectors are cluttering even the statement of this theorem. Tools like COQ

allow such arguments to be elided, when they can be uniquely reconstructed. So the theorem to prove
can be written in the much more palatable form:

Πl1 : nat.Πl2 : nat.Πl3 : nat.Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append (append v1 v2) v3) = (append v1 (append v2 v3))

This is much more readable. But as others have noted, while the indices have been elided, they are not
truly erased. This means that the proof of associativity of append must make use of associativity also of
plus, in order for the lengths of the two vectors (on the two sides of the equation) to be equal. Indeed,
even stating this equation may require some care, since the types of the two sides are not definitionally
equal: one has (plus (plus l1 l2) l3) where the other has (plus l1 (plus l2 l3)). This is where techniques
like heterogeneous equality come into play [6].

One solution to this problem is via intersection types, also called in this setting implicit products. An
implicit product ∀x : φ .φ ′ is the type for functions whose arguments are erased during conversion [8, 2, 7].
We seek to take these approaches further, and work with completely unannotated terms. When testing β -
equivalence of terms, we will work with unannotated versions of those terms, where all type- and proof-
annotations have been dropped. For associativity of append, the proof does not require associativity of

plus. This is not the case in the Implicit Calculus of Constructions, for example. From the point of
view of external reasoning, append on vectors will be indistinguishable from append on lists (without
statically tracked length).

The Tvec Type Theory. This paper studies versions of a type theory we call Tvec. This system is
like Gödel’s System T, with vectors and explicit equality proofs. We first study an undecidable version
of Tvec with equality reflection, where terms are completely unannotated (Section 2). We establish
standard meta-theoretic results for this unannotated system (Section 3). We then devise a decidable
annotated version of the language, whose soundness is justified by erasure to the unannotated system
(Section 4). We consider the associativity of append in annotated Tvec, as an example (Section 4.1).
This approach of studying unannotated versus annotated versions of the type theory should be contrasted
with the approach taken in NuPRL, based on Martin-Löf’s extensional type theory [3, 5]. There, one
constructs typing derivations, as separate artifacts, for unannotated terms. Here, we unite the typing
derivation and the unannotated term in a single artifact, namely the annotated term.

Large eliminations. Type-level recursion poses challenges for our approach. Because coercions by
equality proofs are erased from terms, we would easily be able to assign a type to diverging or stuck
terms, if we naively extended the system with large eliminations. We propose a solution based on what
we call quasi-implicit products. These effectively serve to mark the introduction and elimination of the
intersection type, and prohibit call-by-value reduction within an introduction. This saves Normalization
and Progress, which would otherwise fail. We develop the meta-theory of an extension of the unanno-
tated system with large eliminations and call-by-value reduction, including normalization (Section 5).
The Tvec approach has been implemented in the GURU dependently programming language, publicly
available at http://www.guru-lang.org [9].

2 Unannotated Tvec

The definition of unannotated Tvec uses unannotated terms a (we sometimes also write b):

a ::= x | (a a′) | λx.a | 0 | (S a) | (Rnat a a′ a′′) | nil | (cons a a′) | (Rvec a a′ a′′) | join

Here, x is for λ -bound variables and S is for successor (not the S combinator). Rnat is the recursor
over natural numbers, and Rvec is the recursor over vectors. We have constructors nil and cons for
vectors. The term construct join is the introduction form for equality proofs. We will not need an
elimination form, since our system includes a form of equality reflection. For readability, we sometimes
use meta-variable l for terms a intended as lengths of vectors. Types φ are defined by:

φ ::= nat | 〈vec φ a〉 | Πx : φ .φ ′ | ∀x : φ .φ ′ | a = a′

The first Π-type is as usual, while the second is an intersection type abstracting a specificational x. This
x need not be λ -abstracted in the corresponding term, nor supplied as an argument when that term is
applied, similarly to Miquel’s implicit products [7].

The reduction relation is the compatible closure under arbitrary contexts of the rules in Figure 1.
Figure 2 gives type assignment rules for Tvec, using a standard definition of typing contexts Γ. We
define Γ Ok to mean that if Γ≡ Γ1,x : φ ,Γ2, then FV(φ)⊂ dom(Γ1). We use a ↓ a′ to mean that a and a′

are joinable with respect to our reduction relation (i.e., there exists â such that a ;∗ â and a′ ;∗ â).
Perhaps surprisingly we do not track well-formedness of types, and indeed the join and conv rules

can introduce untypable terms into types. However, they preserve the invariant that terms deemed equal
are joinable, and that turns out to be enough to ensure type safety.

Type assignment is not syntax-directed, due to the (conv), (spec-abs), and (spec-app)
rules, and not obviously decidable. This will not pose a problem here as we study the meta-theoretic

http://www.guru-lang.org

(λx.a) a′ ; [a′/x]a
(Rnat a a′ 0) ; a
(Rnat a a′ (S a′′)) ; (a′ a′′ (Rnat a a′ a′′))
(Rvec a a′ nil) ; a
(Rvec a a′ (cons a1 a′′)) ; (a′ a1 a′′ (Rvec a a′ a′′))

Figure 1: Reduction semantics for unannotated Tvec terms

Γ(x)≡ φ ΓOk
Γ ` x : φ

var

a ↓ a′ ΓOk
Γ ` join : a = a′

join
Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)

Γ ` a : [a′′/x]φ
conv

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` a : ∀x : φ ′.φ

spec-abs
Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ
spec-app

Γ,x : φ ′ ` a : φ

Γ ` λx.a : Πx : φ ′.φ
abs

Γ ` a : Πx : φ ′.φ Γ ` a′ : φ ′

Γ ` (a a′) : [a′/x]φ
app

ΓOk
Γ ` 0 : nat

zero ΓOk
Γ ` nil : 〈vec φ 0〉 nil

Γ ` a : nat
Γ ` (S a) : nat

succ

x 6∈ dom(Γ)
Γ ` a′′ : nat
Γ ` a : [0/x]φ
Γ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ ` (Rnat a a′ a′′) : [a′′/x]φ
Rnat

Γ ` a : φ

Γ ` a′ : 〈vec φ l〉
Γ ` (cons a a′) : 〈vec φ (S l)〉

cons

x 6∈ dom(Γ)
Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ
Rvec

Figure 2: Type assignment system for unannotated Tvec

properties of the system. Section 4 defines a system of annotated terms which is obviously decidable,
and justifies it by translation to unannotated Tvec. We work up to syntactic identity module safe renaming
of bound variables, which we denote ≡.

3 Metatheory of Unannotated Tvec

Tvec enjoys standard properties: Type Preservation, Progress (for closed terms), and Strong Normaliza-
tion. These are all easily obtained, the last by dependency-erasing translation to another type theory (as
done originally for LF in [4]). Here, we consider a more semantically informative approach to Strong
Normalization. Omitted proofs may be found in a companion report on the second author’s web page.

Theorem 1 (Type Preservation). If Γ ` a : φ and a ; a′, then Γ ` a′ : φ .

Theorem 2 (Progress). If Γ ` a : φ and dom(Γ)∩FV (a) = /0, then either a is a value or ∃a′.a ; a′.

3.1 Semantics of equality

For our Strong Normalization proof, a central issue is providing an interpretation for equality types in the
presence of free variables. We would like to interpret equations like (plus 2 2) = 4 (where the numerals
abbreviate terms formed with S and 0 as usual, and plus has a standard recursive definition), as simply
(plus 2 2) ↓ 4. But when the two terms contain free variables – e.g., in (plus x y) = (plus y x) – or when
the context is inconsistent, the semantics should make the equation true, even though its sides are not
joinable. So our semantics for equality types is joinability under all ground instances of the context Γ.
The notation for this is a∼Γ a′. The definition must be given as part of the definition of the interpretation
of types, because we want to stipulate that the substitutions σ replace each variable x by a ground term
in the interpretation of σΓ(x). When Γ is empty, we will write a ∼Γ a′ as a ∼ a′. We use a similar
convention for other notations subscripted by a context below.

3.2 The interpretation of types

The interpretation of types is given in Figure 3. We stipulate up front (not in the clauses in the figure) that
a∈ [[φ]]Γ requires a∈ SN and Γ ` a : φ . The definition in Figure 3 proceeds by well-founded recursion on
the triple (|Γ|,d(φ), l(a)), in the natural lexicographic ordering. Here, |Γ| is the cardinality of dom(Γ),
and if a ∈ SN, then we make use of a (finite) natural number l(a) bounding the number of symbols in
the normal form of a. We need to assume confluence of reduction elsewhere in this proof, so it does not
weaken the result to assume here that each term has at most one normal form. The quantity d(φ) is the
depth of φ , defined as follows:

d(nat) = 0 d(〈vec φ l〉) = 1+d(φ)
d(Πx : φ .φ ′) = 1+max(d(φ),d(φ ′)) d(∀x : φ .φ ′) = 1+max(d(φ),d(φ ′))
d(a = a′) = 0

Note that d(φ) = d([a/x]φ) for all a, x, and φ . Also, in the clause for vec-types, since the right hand
side of the clause conjoins the condition a∈ SN, l(a) is defined, and we have l(a′′) < l(cons a′ a′′). The
figure gives an inductive definition for when σ ∈ [[Γ]]∆. We call such a σ a closable substitution.

In general, the inductive definition of closable substitution σ ∈ [[Γ]]∆ allows the range of the substi-
tution to contain open terms. When ∆ is empty, σ is a closing substitution. The definition of [[·]] for
types uses the definition of closable substitutions in a well-founded way. We appeal only to [[Γ]] (with an
empty context ∆) in the definitions of [[φ]]Γ and [[φ]]+

Γ
. Where the definition of [[Γ]]∆ appeals back to the

interpretation of types, it does so only when this Γ was non-empty, and with an empty context given for
the interpretation of the type. So |Γ| has indeed decreased from one appeal to the interpretation of types
to the next.

a ∈ [[nat]]Γ ⇔ >
a ∈ [[〈vec φ l〉]]Γ ⇔ (a ;∗ nil ⇒ l ∼Γ 0) ∧

∀a′.∀a′′.a ;∗ (cons a′ a′′) ⇒ (i) a′ ∈ [[φ]]Γ ∧ ∃l′.
(ii) a′′ ∈ [[〈vec φ l′〉]]Γ ∧
(iii) l ∼Γ (S l′)

a ∈ [[Πx : φ ′.φ]]Γ ⇔ ∀a′ ∈ [[φ ′]]+
Γ
. (a a′) ∈ [[[a′/x]φ]]Γ

a ∈ [[∀x : φ ′.φ]]Γ ⇔ ∀a′ ∈ [[φ ′]]+
Γ
. a ∈ [[[a′/x]φ]]Γ

a ∈ [[a1 = a2]]Γ ⇔ (a ;∗ join⇒ a1 ∼Γ a2)

where:
a∼Γ a′ ⇔ ∀σ . σ ∈ [[Γ]] ⇒ (σa) ↓ (σa′)
a ∈ [[φ]]+

Γ
⇔ a ∈ [[φ]]Γ ∧ (|Γ|> 0 ⇒ ∀σ ∈ [[Γ]]. σa ∈ [[σφ]])

and also:

/0 ∈ [[·]]∆
a ∈ [[σφ]]+

∆
σ ∈ [[Γ]]∆

σ ∪{(x,a)} ∈ [[Γ,x : φ]]∆

Figure 3: The interpretation a ∈ [[φ]]Γ of strongly normalizing terms with Γ ` a : φ

3.3 Critical properties

A term is defined to be neutral iff it is of the form (a a′) or (RB a a′ a′′) (with B ∈ {nat,vec}), or
if it is a variable. We prove three critical properties of reducibility at type φ , by mutual induction on
(|Γ|,d(φ), l(a)). Here we write next(a) = {a′ | a ; a′}.

R-Pres. a ∈ [[φ]]Γ ⇒ next(a)⊂ [[φ]]Γ.
R-Prog. If a is neutral and Γ ` a : φ , then next(a)⊂ [[φ]]Γ ⇒ a ∈ [[φ]]Γ.
R-Join. Suppose a1 ∼Γ a2; Γ ` a′ : a1 = a2 for some a′; and x 6∈ dom(Γ). Then [[[a1/x]φ]]Γ ⊂ [[[a2/x]φ]]Γ.

3.4 Soundness of typing with respect to the interpretation

Our typing rules are sound with respect to our interpretation of types (Figure 3). As usual, we must
strengthen the statement of soundness for the induction to go through. We need a subcontext relationship,
denoted ∆⊂ Γ, for ∆ and Γ contexts: ∆⊂ Γ ⇔ ∀x ∈ dom(∆). ∆(x) = Γ(x).

Theorem 3 (Soundness for Interpretations). Suppose Γ ` a : φ . Then for any ∆Ok with ∆ ⊂ Γ and
σ ∈ [[Γ]]∆, we have (σa) ∈ [[σφ]]∆.

Critically, we quantify over possibly open substitutions σ , whose ranges consist of closable terms.

Corollary 1 (Strong Normalization). If Γ ` a : φ , then a ∈ SN.

Corollary 2. If Γ ` a : φ and Γ ` a′ : φ ′, then a ↓ a′ is decidable.

Corollary 3 (Equational Soundness). If · ` a : b1 = b2, then b1 ↓ b2.

Corollary 4 (Logical Soundness). There is a type φ such that ` a : φ does not hold for any a.

Proof. By Equational Soundness, we do not have ` a : 0 = (S 0) for any a.

|x| = x |(t t ′)| = (|t| |t ′|)
|(t t ′)−| = |t| |λx : φ .t| = λx.|t|
|λ−x : φ .t| = |t| |0| = 0
|(S t)| = (S |t|) |(nil φ)| = nil
|(cons t t ′)| = (cons |t| |t ′|) |(Rnat x.φ t t ′ t ′′)| = (Rnat |t| |t ′| |t ′′|)
|(Rvec x.y.φ t t ′ t ′′)| = (Rvec |t| |t ′| |t ′′|) |(join t t ′)| = join
|(cast x.φ t t ′)| = |t ′|

Figure 4: Translation from annotated terms to unannotated terms

4 Annotated Tvec

We now define a system of annotated terms t, and a decidable type computation system deriving judg-
ments Γ
 t : φ , justified by dropping annotations via | · | (defined in Figure 4). The annotated terms t are
the following. Annotations include types φ , possibly with designated free variables, as in x.φ (bound by
the dot notation).

t ::= x | (t t ′) | (t t ′)− | λx : φ .t | λ−x : φ .t | 0 | (S t) | (Rnat x.φ t t ′ t ′′)
| (nil φ) | (cons t t ′) | (Rvec x.y.φ t t ′ t ′′) | (join t t ′) | (cast x.φ t t ′)

Three new constructs correspond to the typing rules (spec-abs), (spec-app), and (conv) of
Figure 2: λ−x : φ ′.φ , (t t ′)− and (cast x.φ t t ′). Figure 5 gives syntax-directed type-computation
rules, which constitute a deterministic algorithm for computing a type φ as output from a context Γ and
annotated term t as inputs. Several rules use the | · | function, since types φ (as defined in Section 2
above) may mention only unannotated terms.

Theorem 4 (Algorithmic Typing). Given Γ and a, we can, in an effective way, either find φ such that
Γ
 a : φ , or else report that there is no such φ .

This follows in a standard way from inspection of the rules, using Corollary 2 for the join-rule.

Theorem 5 (Soundness for Type Assignment). If Γ
 t : φ then Γ ` |t| : φ .

4.1 Example

Now let us see versions of the examples mentioned in Section 1, available in the guru-lang/lib/vec.g
library file for GURU (see www.guru-lang.org). The desired types for vector append (“append”)
and for associativity of vector append are:

append : ∀l1 : nat.∀l2 : nat.Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.〈vec φ (plus l1 l2)〉
append assoc : ∀l1 : nat.∀l2 : nat.∀l3 : nat.

Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append (append v1 v2) v3) = (append v1 (append v2 v3))

We consider now annotated inhabitants of these types. The first is the following:

append = λ−l1 : nat.λ−l2 : nat.λv1 : 〈vec φ l1〉.λv2 : 〈vec φ l2〉.
(Rvec (x.y.〈vec φ (plus x l2)〉)

(cast (x.〈vec φ x〉) P1 v2)
(λ−l : nat.λx : φ .λv′1 : 〈vec φ l〉.λ r : 〈vec φ (plus l l2)〉).

(cast (x.〈vec φ x〉) P2 (cons x r))
v1)

www.guru-lang.org

Γ
 t : φ Γ
 t ′ : φ ′ |t| ↓ |t ′|
Γ
 (join t t ′) : |t|= |t ′|

Γ
 t : a = a′ Γ
 t ′ : [a/x]φ
Γ
 (cast x.φ t t ′) : [a′/x]φ

Γ,x : φ ′
 t : φ x 6∈ FV(|t|)
Γ
 λ−x : φ ′.t : ∀x : φ ′.φ

Γ
 t : ∀x : φ ′.φ Γ
 t ′ : φ ′

Γ
 (t t ′)− : [|t ′|/x]φ
Γ,x : φ ′
 t : φ

Γ
 λx : φ ′.t : Πx : φ ′.φ

Γ
 t : Πx : φ ′.φ Γ
 t ′ : φ ′

Γ
 (t t ′) : [|t ′|/x]φ

Γ
 t ′′ : 〈vec φ ′ l〉
Γ
 t : [0/x,nil/y]φ
Γ
 t ′ : ∀l : nat.Πz : φ ′.Πv : 〈vec φ ′ l〉.Πu : [l/x,v/y]φ .

[(S l)/x,(cons z v)/y]φ

Γ
 (Rvec x.y.φ t t ′ t ′′) : [l/x, |t ′′|/y]φ

Figure 5: Type-computation system for annotated Tvec (selected rules)

The two cases in the Rvec term return a type-cast version of what would standardly be returned in
an unannotated version of append. The proofs P1 and P2 used in those casts show respectively that
l2 = (plus 0 l2) and (S (plus l l2)) = (plus (S l) l2). They are simple join-proofs:

P1 = (join l2 (plus 0 l2)) P2 = (join (S (plus l l2)) (plus (S l) l2))

Now for append assoc, we can use the following annotated term:

append assoc = λ−l1 : nat.λ−l2 : nat.λ−l3 : nat.
λv1 : 〈vec φ l1〉.λv2 : 〈vec φ l2〉.λv3 : 〈vec φ l3〉.

(Rvec (x.y.(append (append v1 v2) v3) = (append v1 (append v2 v3)))
(join (append (append nil v2) v3) = (append nil (append v2 v3)))
(λ−l : nat.λx : φ .λv′1 : 〈vec φ l〉.

λ r : (append (append v′1 v2) v3) = (append v′1 (append v2 v3)).
P3))

The omitted proof P3 is an easy equational proof of the following type:

(append (append (cons x v′1) v2) v3) = (append (cons x v′1) (append v2 v3))

5 Tvec with Large Eliminations

Next we study an extended version of Tvec with large eliminations, i.e. types defined by pattern match-
ing on terms. This extended language no longer is normalizing under general β -reduction ;, but we
will prove that well-typed closed terms normalize under call-by-value evaluation ;v. In particular, the
language is type safe and logically consistent.

The additions to the language and type system are shown in in figure 6. The type language is ex-
tended with type variables α , and a recursion form which is introduced and eliminated by the fold and
unfold rules. While type conversion and type folding/unfolding are completely implicit, we replace
the spec-abs/app rules with new rules spec-abs’/app’ which require the place where we in-
troduce or eliminate the ∀-type to be marked by new quasi-implicit forms (λ .a) and (a). These forms
do not mention the quantified variable or the term it is instantiated with, so we retain the advantages
of specificational reasoning. The point of these forms is their evaluation behavior: ((λ .a)) ;v a, and

φ ::= . . . | α | R a φ (α.φ ′) a ::= . . . | (λ .a) | (a) v ::= . . . | (λ .a)

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` (λ .a) : ∀x : φ ′.φ

spec-abs’
Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` (a) : [a′/x]φ
spec-app’

Γ ` a : φ

Γ ` a : R 0 φ (α.φ ′)
foldZ

Γ ` a : R 0 φ (α.φ ′)
Γ ` a : φ

unfoldZ

Γ ` a : [R a′φ (α.φ ′)/α]φ ′ Γ ` a′ : nat
Γ ` a : R (S a′) φ (α.φ ′)

foldS
Γ ` a : R (S a′) φ (α.φ ′) Γ ` a′ : nat

Γ ` a : [R a′ φ (α.φ ′)/α]φ ′
unfoldS

Figure 6: Types, terms, values, and typing rules for Tvec with large eliminations.

(λ .a) counts as a value so CBV evaluation will never reduce inside it. Besides this, the CBV operational
semantics is standard, so we omit it here.

In the language with large eliminations we no longer have normalization or type safety for arbitrary
open terms. This is because the richer type system lets us make use of absurd equalities: whenever we
have Γ ` a : φ and Γ ` p : (S a′)=0, we can show Γ ` a : φ ′ for any φ ′ by going via the intermediate type
(R 0 φ(α.φ ′)). In particular, this means we can show judgements like

p : 1=0 ` (λx.x x) (λx.x x) : nat and p : 1=0 ` 0 0 : nat.

This is also the reason we introduce the quasi-implicit products. Using our old rule spec-abs we
would be able to show ` 0 0 : ∀p : 1=0.nat, despite 0 0 being a stuck term in our operational semantics.

Because of this quod libet property it is no longer convenient to prove Progress and Preservation be-
fore Normalization. While the proof of Preservation is not hard, Progress as we have seen depends on the
logical consistency of the language, which is exactly what we hope to establish through Normalization.
To cut this circle we design an interpretation of types that lets us prove type safety, Canonical forms and
Normalization in a single induction. This interpretation (figure 8) has several interesting features.

5.1 Semantics of Equality

We need to pick an interpretation for equality types. Since we are only interested in closed terms, this
can be less elaborate than in section 3. Perhaps surprisingly, even though we are interested in CBV-
evaluation of programs, we can still interpret equality as joinability ↓ under unrestricted β -reduction.
In the interpretation we use ;v for the program being evaluated, but ; whenever we talk about terms
occuring in types (namely in vec, =, and R-types). The join typing rule is specified in terms of ;, so
when doing symbolic evaluation of programs at typechecking time the typechecker can use unrestricted
reduction, which gives a powerful type system than can prove many equalities.

5.2 Unfolding of R-Types

Since we are only interested in closed terms, we can interpret R-types by simply expanding them out
– we need not worry about types like (R x φ (α.φ ′)) which is stuck on a variable. There is however a
small subtlety: since we interpret R-types by unfolding them, in order to prove that the interpretation is
well-defined, we need to show that we will not encounter an infinite sequence of unfoldings. In other
words, before we can show normalization of terms, we need to show normalization of type unfolding.

b ;∗ 0
φ1 7−→ φ ′1

R b φ1 (α.φ2) 7−→ φ ′1
rwrR−beta1

b ;∗ (S n)
φ1 7−→ φ ′1
φ2 7−→ φ ′2

R b φ1 (α.φ2) 7−→ [R n φ ′1 (α.φ ′2)/α]φ ′2
rwrR−beta2

Figure 7: Type rewriting φ 7−→ φ ′ (excerpt: congruence and reflexivity rules omitted)

Define [[φ]] = [[Oφ]] if φ 7−→ φ ′ for some φ ′. Otherwise, define

a ∈ [[nat]] ⇔ ∃n.a ;∗
v n

a ∈ [[〈vec φ l〉]] ⇔ (a ;∗
v nil ∧ l ;∗ 0) ∨

∃v v′ n. a ;∗
v (cons v v′)∧ l ;∗ (S n)

∧ v ∈ [[φ]] ∧ v′ ∈ [[〈vec φ n〉]]
a ∈ [[Πx : φ ′.φ]] ⇔ ∃a′.a ;∗

v (λx.a′) ∧ ∀a′ ∈ [[φ ′]]. (a a′) ∈ [[[a′/x]φ]]
a ∈ [[∀x : φ ′.φ]] ⇔ ∃a′.a ;∗

v (λa′) ∧ ∀a′ ∈ [[φ ′]]. (a) ∈ [[[a′/x]φ]]
a ∈ [[a1 = a2]] ⇔ a ;∗

v join ∧ a1 ↓ a2
a ∈ [[R b φ (α.φ ′)]] ⇔ False

/0 ∈ [[·]]

v ∈ [[σφ]] σ ∈ [[Γ]]
σ ∪{(x,v)} ∈ [[Γ,x : φ]]

Figure 8: Type interpretation a∈ [[φ]] and context interpretation σ ∈ [[Γ]] for Tvec with large eliminations

For our type language, this is not an onerous requirement. Furthermore, we design the interpretation
to only require proof of weak normalization and confluence, rather than strong normalization. We pro-
ceed by defining a rewrite-relation 7−→ on types, with the β -rules given in figure 7. It is routine[10] to
show that 7−→∗ is confluent, and it also easy to see that there exists a rewriting strategy which always
terminates (rewrite innermost redexes first). Together, these two facts prove uniqueness of normal forms.

Lemma 1. Every type φ has a unique 7−→-normal form, which we will denote Oφ .

Lemma 2 (Properties of type unfolding).

• O〈vec φ a〉= 〈vec φ Oa〉, O(∀x : φ ′.φ) = ∀x : Oφ ′.Oφ , and O(Πx : φ ′.φ) = Πx : Oφ ′.Oφ .

• For all σ , φ , we have OσOφ = Oσφ .

• If a1 ↓ a2, then for any φ there exists a ψ such that O[a1/x]φ = [a1/x]ψ and O[a2/x]φ = [a2/x]ψ .

5.3 Normalization to Canonical Form

Now we can define the interpretation [[]] as in figure 8. The way we define it means that [[φ]] = [[Oφ]].
This allows us to prove the following lemma.

Lemma 3. For all types φ (not just types such that φ 67−→), if φ is not an R-type then the equivalences in
figure 8 hold.

With this lemma in hand, the proof proceeds much like the proof for open terms in section 3:
R-Canon. If a ∈ [[φ]], then a ;∗

v v for some v. Furthermore, if the top-level constructor of φ is nat, Π,
∀, =, or vec, then v is the corresponding introduction form.
R-Pres. If a ∈ [[φ]] and a ;v a′, then a′ ∈ [[φ]].
R-Prog. If a ;v a′, and a′ ∈ [[φ]], then a ∈ [[φ]].
R-Join. If a1 ↓ a2, then a ∈ [[[a1/x]φ]] implies a ∈ [[[a2/x]φ]].

Theorem 6. If Γ ` a : φ and σ ∈ [[Γ]], then σa ∈ [[σφ]].

Corollary 5 (Type Safety). If ` a : φ , then a ;∗
v v.

Corollary 6 (Logical Soundness). ` a : 1=0 does not hold for any a.

6 Conclusion and Future Work

The Tvec type theory includes intersection types and a form of equality reflection, justified by translation
to an undecidable unannotated system. The division into annotated and unannotated systems enables
us to reason about terms without annotations, while retaining decidable type checking. We have seen
how this approach extends to a language including large eliminations, by introducing a novel kind of
quasi-implicit products. The quasi-implicit products allow convenient reasoning about specificational
data, while permitting a simple proof of normalization of closed terms. Possible future work includes
formalizing the metatheory, and extending to a polymorphic type theory. Adding an extensional form of
equality while retaining decidability would also be of interest, as in [1].

Acknowledgments: Thanks to members of the TRELLYS team, especially Stephanie Weirich and
Tim Sheard, for discussions on this and related systems. This work was partially supported by the the
U.S. National Science Foundation under grants 0910510 and 0910786.

References

[1] T. Altenkirch, C. McBride, and W. Swierstra. Observational Equality, Now! In A. Stump and H. Xi, editors,
PLPV ’07: Proceedings of the 2007 Workshop on Programming Languages meets Program Verification,
pages 57–68, 2007.

[2] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a Programming Language with Depen-
dent Types. In Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, volume 4962 of Lecture Notes in Computer Science, pages
365–379. Springer, 2008.

[3] R. Constable and the PRL group. Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, 1986.

[4] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commun. ACM,
22(8):465–476, 1979.

[5] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of the Association for
Computing Machinery, 40(1):143–184, January 1993.

[6] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
[7] C. McBride. Dependently Typed Functional Programs and Their Proofs. PhD thesis, 1999.
[8] A. Miquel. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, pages

344–359, 2001.
[9] N. Mishra-Linger and T. Sheard. Erasure and Polymorphism in Pure Type Systems. In Roberto M. Ama-

dio, editor, Foundations of Software Science and Computational Structures, 11th International Conference
(FOSSACS), pages 350–364. Springer, 2008.

[10] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified Programming in Guru. In T. Altenkirch
and T. Millstein, editors, Programming Languges meets Program Verification (PLPV), 2009.

[11] Masako Takahashi. Parallel reductions in λ -calculus. Inf. Comput., 118(1):120–127, 1995.

A Proof of Type Preservation (Theorem 1)

More about contexts. In more detail, we consider a contexts Γ to be a function from a finite set of
variables to types, together with a total ordering on its domain, and write Γ,x : φ for the function that
behaves just like Γ, except that it returns φ for x, and places x after the variables in dom(Γ). When
Γ≡ Γ1∪Γ2 with all the variables in Γ2 greater than those of Γ1 in the ordering, we write Γ1,Γ2 (implying
also that the domains of Γ1 and Γ2 are disjoint).

The proof of Type Preservation is by induction on the structure of the assumed typing derivation. We
list all cases. Unless we introduce meta-variable b for another purpose, in each case we will assume the
term in question reduces to b. In cases where the term in question is a normal form, this will lead to a
contradiction.

Case:

Γ(x)≡ φ

Γ ` x : φ

This case cannot arise, since x is a normal form and so cannot reduce.

Case:

a ↓ a′

Γ ` join : a = a′

This case cannot arise, since join is a normal form.

Case:

Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)
Γ ` a : [a′′/x]φ

(Recall that by convention in this proof, our second assumption is a ; b.) By the induction hypothesis,
we have Γ ` b : [a′/x]φ . We may then reapply this rule to conclude Γ ` b : [a′′/x]φ .

Case:

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` a : ∀x : φ ′.φ

By the induction hypothesis, we have Γ,x : φ ′ ` b : φ . Reduction cannot increase the set of free variables,
so x 6∈ FV(b). We may then reapply this rule to obtain Γ ` b : ∀x : φ ′.φ .

Case:

Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ

By the induction hypothesis, we have Γ ` b : ∀x : φ ′.φ . We may then reapply this rule to obtain Γ ` b :
[a′/x]φ .

Case:

Γ,x : φ ′ ` a : φ

Γ ` λx.a : Πx : φ ′.φ

By the induction hypothesis, we have Γ,x : φ ′ ` b : φ . We may then reapply this rule to obtain Γ ` λx.b :
Πx : φ ′.φ .

Case:

Γ ` a : Πx : φ ′.φ Γ ` a′ : φ ′

Γ ` (a a′) : [a′/x]φ

Suppose the reduction is from a ; b, so we have (a a′) ; (b a′). Then we apply the induction hypothesis
to the first premise to obtain Γ ` b : Πx : φ ′.φ , and then reapply this rule to obtain Γ ` (b a′) : [a′/x]φ .
Suppose now that the reduction is from a′; b′, so we have (a a′) ; (a b′). Then we apply the induction
hypothesis to the second premise to obtain Γ ` b′ : φ ′. Reapplying this rule then gives us Γ ` (a b′) :
[b′/x]φ . We must now apply the conv rule (of Figure 2), using as the first premise the judgment Γ `
join : a′ = b′, which is derivable since a′ ↓ b′ (because a′ ; b′). This gives us the desired result:
Γ ` (a b′) : [a′/x]φ .

Finally, suppose the reduction is because we have a ≡ λx.b for some x and b, and the application
itself is being β -reduced. In this case, we need a lemma in order to limit the cases arising from inversion
on the derivation of Γ ` λx.b : Πx : φ ′.φ . We now need this lemma (proof in Section A.1):

Lemma 4 (Simplifying Inversion). Suppose Γ ` a : φ is derivable, where a is an introduction form (i.e.,
of the form join, 0, (S b), nil, (cons b b′), or λx.b), and φ has the corresponding form of type
(e.g., a Π-type for a λ -abstraction). Then Γ ` a : φ is also derivable by a derivation starting with the
corresponding introduction rule for the form of a, using the same context Γ, and followed by a sequence
of (conv) inferences.

Using Simplifying Inversion on the derivation Γ ` λx.b : Πx : φ ′.φ , we may assume this derivation starts
like this:

Γ,x : ψ ′ ` b : ψ

Γ ` λx.b : Πx : ψ ′.ψ

The derivation then uses a sequence S of (conv) inferences to end in Γ ` λx.b : Πx : φ ′.φ . Let S−1

be the sequence which is just the same except that for every first premise Γ ` d : c = c′ of a (conv)-
inference in S, we have a (conv) inference with first premise Γ ` join : c′ = c, easily derived from
Γ ` d : c = c′. We now wish to show that the result of substituting our a′ for x in b has the expected type
[a′/x]φ . For this, we must first apply the sequence S−1 to Γ ` a′ : φ ′. This gives us Γ ` a′ : ψ ′. Now we
apply Substitution (proved in Section A.2 below):

Lemma 5 (Substitution). If Γ,x : φ ,Γ′ ` a′ : φ ′ and Γ ` a : φ , then Γ, [a/x]Γ′ ` [a/x]a′ : [a/x]φ ′.

This gives us Γ ` [a/x]a′ : [a/x]ψ . We may apply S now to obtain Γ ` [a/x]a′ : [a/x]φ .

Case:

Γ ` 0 : nat

This case cannot arise since 0 is a normal form.

Case:

Γ ` nil : 〈vec φ 0〉

This case cannot arise since nil is a normal form.

Case:

Γ ` a : nat
Γ ` (S a) : nat

By the induction hypothesis, we have Γ ` b : nat, and we may then reapply this rule to obtain Γ ` (S b) :
nat.

Case:

Γ ` a′′ : nat
Γ ` a : [0/x]φ
Γ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ ` (Rnat a a′ a′′) : [a′′/x]φ

If the reduction arises from a ; b or a′ ; b or a′′ ; b, then we apply the induction hypothesis to the
corresponding premise and then reapply this typing rule. If the reduction arises because a′′ ≡ 0 and the
Rnat-term is itself being reduced to a, then we have Γ ` a : [a′′/x]φ from the second premise to the rule,
and the fact that a′′≡ 0. Suppose the reduction arises because a′′≡ (S b) and the Rnat-term is itself being
reduced to (a′ b (Rnat a a′ b)). Applying Simplifying Inversion (Lemma 4), we obtain Γ ` b : nat. So
we may apply the Rnat typing rule to obtain Γ ` (Rnat a a′ b) : [b/x]φ . Applying the application typing
rule twice gives us then Γ ` (a′ b (Rnat a a′ b)) : [(S b)/x]φ . This is the desired typing, since a′′ ≡ (S b).

Case:

Γ ` a : φ

Γ ` a′ : 〈vec φ l〉
Γ ` (cons a a′) : 〈vec φ (S l)〉

The reduction must arise from a ; b or a′; b, so we apply the induction hypothesis to the corresponding
premise, and then reapply this typing rule.

Case:

Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ

If the reduction arises from a ; b or a′ ; b or a′′ ; b, then we apply the induction hypothesis to the
corresponding premise and then reapply this typing rule. If the reduction arises because a′′ ≡ nil and
the Rnat-term is itself being reduced to a, then we have Γ ` a : [0/y,a′′/x]φ from the second premise
to the rule, and the fact that a′′ ≡ nil. By Simplifying Inversion (Lemma 4), we know there is a
derivation of Γ ` nil : 〈vec φ ′ l〉 which starts with Γ ` nil : 〈vec φ ′′ 0〉 and then has a sequence S
of (conv)-inferences. We may use this same series S to change 0 to l in Γ ` a : [0/y,a′′/x]φ , yielding
the desired conclusion. Finally, suppose the reduction arises because a′′ ≡ (cons b′ b′′) for some b′

and b′′, and the Rvec-term itself is reduced to (a′ b′ b′′ (Rvec a a′ b′′)). By Simplifying Inversion
again, we have a derivation of Γ ` (cons b′ b′′) : 〈vec φ ′ l〉 starting from a cons-introduction deriving
Γ ` (cons b′ b′′) : 〈vec φ ′′ (S l′′) from premises Γb′ : φ ′′ and Γb′′ : 〈vec φ ′′ l′′〉; and then using a
sequence S of (conv) inferences.

We may apply the sequence S of (conv) inferences to the typing for b′′ to obtain Γb′′ : 〈vec φ ′ l̂rangle,
for some l̂ where (S l̂)≡ l. With this, we can reapply the typing rule for Rvec to get Γ ` (Rvec a a′ b′′) :
[l̂/y,b′′/x]φ . Using this and the typing for b′′ we derived just previously, we can obtain Γ` (a′ b′ b′′ (Rvec a a′ b′′)) :
[(S l̂)/y,(cons b′ b′′)/x]φ . Since a ≡ (cons b′ b′′) and (S l̂) ≡ l, the type is equivalent to the desired
one.

A.1 Proof of Simplifying Inversion (Lemma 4)

For the proof of this lemma, we begin by simplifying the derivation D of Γ ` a : φ by applying two
transformations to the maximal path ending with the conclusion D , which is assigning a type to a (rather
than a strict subterm of a). First, we remove all inferences of the following form:

Γ,x : φ ′ ` a : φ

Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ

We may replace this with the result of applying the Substitution Lemma proved in the next section, in the
special case where x 6∈ FV(a). By inspection of the proof of Substitution, we see that while inferences of
the form we are eliminating can be created, they must be created in a part of D typing a strict subterm of
a. This is because a is an introduction form.

The second transformation simplifies this inference:

Γ ` â : a1 = a2 Γ ` a : ∀y : [a1/x]φ ′.[a1/x]φ
Γ ` a : ∀y : [a2/x]φ ′.[a2/x]φ Γ ` a′ : [a2/x]φ ′

Γ ` a : [a′/y][a2/x]φ

Observing that the substitutions in question commute, we reduce this to the following, where â′ is easily
constructed to show a2 = a1 from â : a1 = a2:

Γ ` â : a1 = a2

Γ ` a : ∀y : [a1/x]φ ′.[a1/x]φ
Γ ` â′ : a2 = a1 Γ ` a′ : [a2/x]φ ′

Γ ` a′ : [a1/x]φ ′

Γ ` a : [a1/x][a′/y]φ
Γ ` a : [a2/x][a′/y]φ

For each of these transformations, the following measure is strictly decreased in the lexicographic or-
dering (combining two copies of the natural number ordering): the pair of the sum of the distances of
occurrences of a (conv) inference on the maximal path typing a; and the number of inferences of the

form removed by the first transformation in that same path. Note that the (conv) inference introduced
by the second transformation in the topmost rightmost position show above is not on the maximal path
typing a (it is typing a′). Strict decrease of the stated measure implies that the transformations terminate.
They also preserve the form of the derived judgment.

We can now prove the lemma by induction on the simplified derivation D . It cannot end in a use
of (spec-abs), since then φ would be a ∀-type (and by assumption it is of the form corresonding
to the introduction form which a is assumed to have). It also cannot be a (spec-app) inference,
for the following reason. Consider the maximal consecutive sequence S of (spec-app) inferences
ending at the conclusion of D , and typing a. These inferences cannot start with the conclusion of either
a (conv) or a (spec-abs) inference, since such patterns of inference have been eliminated by the
above transformations. But these are the only possibilities, since a is an introduction form. Therefore,
the derivation D ends in a sequence of (conv) inferences, starting from a use of the introduction rule
for a. Since (conv) does not change the context, this introduction inference for a uses the same context,
as required by the statement of the lemma.

A.2 Proof of Substitution (Lemma 5)

The proof is written using different variable names than the statement of the lemma, in order to not clash
with the variable names in the typing rules. We prove:

If Γ,y : ψ,Γ′ ` a : φ and Γ ` b : ψ , then Γ, [b/y]Γ′ ` [b/y]a : [b/y]φ .
The proof is by induction on the depth of Γ,y : ψ,Γ′ ` a : φ . The cases are:

Case:

(Γ,y : ψ,Γ′)(x)≡ φ ΓOk
Γ,y : ψ,Γ′ ` x : φ

There are three cases: x ∈ dom(Γ), x ∈ dom(Γ′), or x = y. If x ∈ dom(Γ), then by ΓOk we know
y 6∈ FV (φ), so [b/y]φ ≡ φ and the conclusion follows by Var. If x ∈ dom(Γ′) the conclusion follows
directly by Var. In the case x = y, we use the second assumption together with a weakening lemma:

Lemma 6 (Weakening). If Γ ` a : φ , dom(Γ)⊂ dom(Γ′), and Γ′Ok, then Γ,Γ′ ` a : φ .

Proof. Induction on Γ ` a : φ . The only interesting cases are for Abs and Spec-Abs. There we have
Γ,x : φ ′ ` a : φ by assumption; by regularity, we get Γ,x : φ ′Ok, so then Γ′,x : φ ′Ok and the conclusion
follows by IH.

Lemma 7 (Free variables of typable terms). If Γ ` a : φ , then FV(a)⊂ dom(Γ).

The proof is a straightforward induction on the typing derivation.
We also need to note that by Lemma 7 FV(b)⊂ dom(Γ), and the substitution preserves well-scoping

of contexts:

Lemma 8. If Γ,y : ψ,Γ′Ok and FV(b)⊂ dom(Γ), then Γ, [b/y]Γ′Ok.

Proof. For each variable z in Γ′, if the entire context looks like Γ,y : ψ,Γ′′,z : φ ,Γ′′′ we know that
FV([b/y]φ) ⊂ FV(φ)∪FV(b)−{y} and dom(Γ, [b/y]Γ′′) = dom(Γ,y : ψ,Γ′′)−{y}, so [b/y]φ is still
well-scoped.

Case:

a ↓ a′

Γ,y : ψ,Γ′ ` x : φ ` join : a = a′

Immediate by the fact that substitution preserves joinability.

Case:

Γ,y : ψ,Γ′ ` a′′′ : a′ = a′′ Γ,y : ψ,Γ′ ` a : [a′/x]φ x 6∈ dom(Γ,y : ψ,Γ′)
Γ,y : ψ,Γ′ ` a : [a′′/x]φ

First, rename x in φ so that x 6∈ FV(b).
By IH we get Γ, [b/y]Γ′ ` [b/y]a′′′ : [b/y]a′= [b/y]a′′ and Γ, [b/y]Γ′ ` [b/y]a : [b/y][a′/x]φ ≡ [[b/y]a′/x][b/y]φ .

Now by (conv) we conclude Γ, [b/y]Γ′ ` [b/y]a : [[b/y]a′′/x]φ ≡ [b/y][a′′/x]φ as required.

Case:

Γ,y : ψ,Γ′,x : φ ′ ` a : φ x 6∈ FV(a)
Γ,y : ψ,Γ′ ` a : ∀x : φ ′.φ

First, rename x in the derivation of Γ,y : ψ,Γ′,x : φ ′ ` a : φ so that x 6∈ FV(a)∪FV(b). This can be done
without changing the depth.

By IH we get Γ, [b/y]Γ′,x : [b/y]φ ′ ` [b/y]a : [b/y]φ . The conclusion follows by Spec-Abs.

Case:

Γ,y : ψ,Γ′ ` a : ∀x : φ ′.φ Γ,y : ψ,Γ′ ` a′ : φ ′

Γ,y : ψ,Γ′ ` a : [a′/x]φ

Pick x 6= y and x 6∈ FV(b).
By IH we get Γ, [b/y]Γ′ ` [b/y]a : [b/y]∀x : φ ′.φ ≡ ∀x : [b/y]φ ′.[b/y]φ and Γ, [b/y]Γ′ ` [b/y]a′ :

[b/y]φ ′. Then by Spec-App, Γ, [b/y]Γ′ ` [b/y]a : [[b/y]a′/x][b/y]φ ≡ [b/y][a′/x]φ as required.
Case:

Γ,y : ψ,Γ′ ` a : φ

Γ,y : ψ,Γ′,x : φ ′ ` λx.a : Πx : φ ′.φ

Similar to Spec-abs.

Case:

Γ,y : ψ,Γ′ ` a : Πx : φ ′.φ Γ,y : ψ,Γ′ ` a′ : φ ′

Γ,y : ψ,Γ′ ` (a a′) : [a′/x]φ

Similar to Spec-App.

Case:

Γ ` 0 : nat

Immediate.

Case:

Γ ` nil : 〈vec φ 0〉

Immediate.

Case:

Γ ` a : nat
Γ ` (S a) : nat

Immediate by IH.

Case:

Γ,y0 : ψ,Γ′ ` a′′ : nat
Γ,y0 : ψ,Γ′ ` a : [0/x]φ
Γ,y0 : ψ,Γ′ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ,y0 : ψ,Γ′ ` (Rnat a a′ a′′) : [a′′/x]φ

First rename x in φ so that x 6∈ FV(b)∪{z,y}.
IH gives

Γ, [b/y0]Γ′ ` a : [b/y0][0/x]φ ≡ [0/x][b/y0]φ

and

Γ, [b/y0]Γ′ ` a′ : [b/y0]Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ ≡Πy : nat.Πu : [y/x][b/y0]φ .[(Sy)/x][b/y0]φ

Then by Rnat,

Γ, [b/y0]Γ′ ` (Rnat a a′ a′′) : [[b/y0]a′′/x][b/y0]φ ≡ [b/y0][a′′/x]φ

Case:

Γ,y : ψ,Γ′ ` a : φ

Γ,y : ψ,Γ′ ` a′ : 〈vec φ l〉
Γ,y : ψ,Γ′ ` (cons a a′) : 〈vec φ (S l)〉

Immediate by IH.

Case:

Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ

Similar to Rnat case.

B Proof of Progress (Theorem 2)

The proof is by induction on Γ ` a : φ .

Case:

Γ(x)≡ φ

Γ ` x : φ

Impossible by dom(Γ)∩FV (v) = /0.

Case:

a ↓ a′

Γ ` join : a = a′

join is a value, as required.

Case:

Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)
Γ ` a : [a′′/x]φ

Directly by the IH for Γ ` a : [a′/x]φ .

Case:

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` a : ∀x : φ ′.φ

The condition x 6∈ FV(a) ensures that dom(Γ,x : φ ′)∩FV(a) = /0, so we can apply the IH for Γ,x : φ ′ `
a : φ .

Case:

Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ

Directly by the IH for Γ ` a : ∀x : φ ′.φ .
Case:

Γ,x : φ ′ ` a : φ

Γ ` λx.a : Πx : φ ′.φ

λx.a is a value as required.

Case:

Γ ` a : Πx : φ ′.φ Γ ` a′ : φ ′

Γ ` (a a′) : [a′/x]φ

By the IH for Γ ` a : Πx : φ ′.φ , we know a either steps or is a value. If a steps, the entire expression
(a a′) steps also, by ;-congruence. If a is a value, by Lemma ?? a = λa.ao, so (a a′) steps by β .
Case:

Γ ` 0 : nat

0 is a value as required.

Case:

Γ ` nil : 〈vec φ 0〉

nil is a value as required.

Case:

Γ ` a : nat
Γ ` (S a) : nat

By the IH for Γ ` a : nat, we know a either steps or is a value; accordingly Sa steps or is a value.

Case:

Γ ` a′′ : nat
Γ ` a : [0/x]φ
Γ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ ` (Rnat a a′ a′′) : [a′′/x]φ

By the IH for Γ ` a′′ : nat and Lemma ??, we know that either a′′ steps or a′′ = 0 or a′′ = S v. Then
(Rnat a a′ a′′) steps by congruence or one of the two reduction rules, respectively.

Case:

Γ ` a : φ

Γ ` a′ : 〈vec φ l〉
Γ ` (cons a a′) : 〈vec φ (S l)〉

By the IH, a and a′ either step or are values; accordingly (cons a a′) steps by congruence or is a value.

Case:

Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ

By the IH for Γ ` a′′ : 〈vec φ ′ l〉 and Lemma ??, we know that either a′′ steps or a′′ = nil or a′′ =
(cons v v′). Then (Rvec a a′ a′′) steps by congruence or by one of the two reduction rules, respectively.

B.1 Proof of Canonical Forms (Lemma ??)

Induction on the typing judgement. The cases are

• var Impossible by dom(Γ)∩FV (v) = /0.

• conv
Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)

Γ ` a : [a′′/x]φ

The types [a′′/x]φ and [a′/x]φ have the same top-level structure, so the IH applies.

• spec-abs
Γ,x : φ ′ ` a : φ x 6∈ FV(a)

Γ ` a : ∀x : φ ′.φ

The condition x 6∈ FV(a) ensures that dom(Γ,x : φ ′)∪FV (v) = /0. Also, the type φ still has the
required form. So the IH applies.

• spec-app
Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ

If the type [a′/x]φ has the required form, then ∀x : φ ′.φ has required form also, so the IH applies.

• join,abs,zero,nil,succ,cons The value in the conclusion has the required form.

• app, Rnat, Rvec The term in the conclusion is not a value.

C Proof of Critical Properties (Section 3.3)

C.1 More basic notation

We will define a term context to be a term a∗ with a designated free variable ∗, which may be instantiated
in a capture-avoiding way by a term a′ using the notation a∗[a′].

Also, if S is a set of terms, then we will allow ourselves to write a term which has S inserted for the
hole of some context a∗. For example, we may write λx.{x,(x x)} (here a∗ = λx.∗). The meaning of this
notation is the set of terms {a∗[a′]|a′ ∈ S}. So in the example: {λx.x, λx.(x x)}.

Finally, if a ∈ SN, we define ν(a) to be some bound on the lengths of the reduction sequences from
a.

C.2 Preliminary observation

We will not explicitly prove strong normalization or typability in the cases for R-Join below. This is
because R-Join assumes Γ ` a′ : a1 = a2 for some a′, so we will always be able to show Γ ` a : [a2/x]φ
from Γ ` a : [a1/x]φ using (conv). Similarly, we will always have a ∈ SN, since it follows from
a ∈ [[[a1/x]φ]]Γ.

C.3 Critical properties for nat

R-Pres holds using Type Preservation (Theorem 1), and the fact that a ∈ SN⇒ next(a) ⊂ SN. For R-
Prog, we have next(a) ⊂ SN⇒ a ∈ SN, and Γ ` a : nat by assumption (of R-Prog). We have R-Join
because all instances [a/x]nat≡ nat have the same (trivial) interpretation.

C.4 Critical properties for 〈vec φ l〉

C.4.1 Proof of R-Pres

Suppose a∈ [[〈vec φ l〉]]Γ, and a ; a′. We have a′ ∈ SN from a∈ SN, and Γ` a′ : φ by Type Preservation.
To prove the second conjunct for [[·]] at vec-type – namely, (a′;∗ nil ⇒ l ∼Γ 0) – assume a′;∗ nil.
From this and the assumption that a ; a′, we have a ;∗ nil. So we can use the corresponding conjunct
for a to conclude l ∼Γ 0, as required. Similar reasoning applies for the third conjunct.

C.4.2 Proof of R-Prog

Suppose next(a)⊂ [[〈vec φ l〉]]Γ, with a neutral and Γ ` a : φ . We have a∈ SN for the same reason as for
the nat case above. It suffices now to show the two conjuncts of the clause of [[·]] for vec-types, for a.
For the first, assume a ;∗ nil. Now since a is neutral, we cannot have a≡ nil. So consider arbitrary
a′ ∈ next(a). From a ;∗ nil and a ; a′, we obtain a′ ;∗ nil by confluence. We may then apply the
corresponding second conjunct for a′ to obtain the desired result for this conjunct. The second conjunct
follows by similar reasoning.

C.4.3 Proof of R-Join

Suppose that a1∼Γ a2, and consider arbitrary a∈ [[[a1/x]〈vec φ l〉]]Γ. We must show a∈ [[[a2/x]〈vec φ l〉]]Γ.
It suffices to prove the two conjuncts for [[·]] at the type involving a2, assuming them for the type involv-
ing a1. For the first conjunct, assume a ;∗ nil. We must show that for an arbitrary σ ∈ [[Γ]], we have
σ([a2/x]l) ↓ 0. From the second conjunct for the a1-type, we have σ([a1/x]l) ↓ 0. Instantiate our first
assumption about a1 and a2, to obtain σa1 ↓σa2. Now we use the fact that joinability is closed under sub-
stitution of joinable terms (proof omitted), to obtain the desired result. Note that joinability is not closed
under substitution of joinable terms for more specialized reduction strategies, such as call-by-value or
call-by-name.

For the second conjunct, assume a ;∗ (cons a′ a′′). From the corresponding second conjunct for
the a1-type, we obtain the following for some l′:

• a′ ∈ [[[a1/x]φ]]Γ

• a′′ ∈ [[〈vec [a1/x]φ l′〉]]Γ

• ∀σ ∈ [[Γ]]. σ([a1/x]l) ↓ (S σ l′)

We use R-Join on the first formula to derive the similar statement involving a2. The measure (|Γ|,d(φ), l(a))
decreases, because the depth of the type decreases (and |Γ| is unchanged). Now let z be a variable not in
dom(Γ) and not free in φ , a1, or l′. Then the second formula is equivalent to a′′ ∈ [[[a1/z]〈vec [z/x]φ l′〉]]Γ,
and by R-Join (where the measure decreases because the depth of the type is the same, but the quan-
tity given by l(·) has decreased), we have a′′ ∈ [[[a2/z]〈vec [z/x]φ l′〉]]Γ, which is equivalent to the
required a′′ ∈ [[〈vec [a2/x]φ l′〉]]Γ. Instantiating the third formula with an arbitrary σ ∈ [[Γ]], we have
σ([a1/x]l) ↓ (S l′). We appeal as above to the closure of joinability under substitution of joinable terms,
to obtain σ([a2/x]l) ↓ (S l′).

C.5 Critical properties for Πx : φ ′.φ

C.5.1 Proof of R-Pres

Assume a ∈ [[Πx : φ ′.φ]]Γ, and consider an arbitrary a′ ∈ [[φ ′]]+
Γ

. By definition of [[·]], we have (a a′) ∈
[[[a′/x]φ]]Γ. We also have

(next(a) a′) ⊂ next(a a′) (1)

By R-Pres at type [a′/x]φ (where we have d([a′/x]φ) < d(Πx : φ ′.φ), and so can apply the induction
hypothesis), we obtain (next(a a′)) ⊂ [[[a′/x]φ]]Γ. By (1), this implies (next(a) a′) ⊂ [[[a′/x]φ]]Γ. We
conclude this for all a′ ∈ [[φ ′]]+

Γ
. Then by the definition of [[·]], we obtain the desired next(a) ⊂ [[Πx :

φ ′.φ]]Γ, using also Type Preservation and the fact that next(a)⊂ SN (since a ∈ SN).

C.5.2 Proof of R-Prog

Suppose a is neutral with Γ ` a : Πx : φ ′.φ . By assumption, we have

next(a)⊂ [[Πx : φ
′.φ]]Γ (2)

It suffices, by the definition of [[·]], to show that a ∈ SN and for all a′ ∈ [[φ ′]]+
Γ

, (a a′) ∈ [[[a′/x]φ]]Γ. We
have a ∈ SN from next(a)⊂ SN, so we focus on the latter property. Consider arbitrary a′ ∈ [[φ ′]]+

Γ
. Since

a is neutral, (a a′) cannot be a β -redex. Since a′ ∈ [[φ ′]]Γ, we have a′ ∈ SN by R-SN at type φ ′ (where
d(φ ′) < d(Πx : φ ′.φ), so the induction hypothesis may be applied). So we may reason by inner induction
on the number ν(a′) to prove that for all a′ ∈ [[φ ′]]+

Γ
, we have (a a′) ∈ [[[a′/x]φ]]Γ. By R-Prog at type

[a′/x]φ (where d([a′/x]φ) < d(Πx : φ ′.φ), so the induction hypothesis may be applied), it suffices to
prove next(a a′)⊂ [[[a′/x]φ]]Γ, since the term in question is neutral and since we have Γ ` (a a′) : [a′/x]φ .
The possibilities for reduction are summarized by:

next(a a′) ⊂ (next(a) a′) ∪ (a next(a′))

We have (next(a) a′) ∈ [[[a′/x]φ]]Γ from (2), by the definition of [[·]]. For reducibility of the second
set, consider arbitrary a′′ ∈ next(a′). By our inner induction hypothesis, which we may apply because
a′′ ∈ [[φ ′]]Γ by R-Pres at type φ ′ (with smaller depth), we have (a a′′) ∈ [[[a′′/x]φ]]Γ. Now we may apply
R-Join at type φ (with smaller depth), using the obvious fact that a′ ; a′′ implies the facts a′ ∼Γ a′′

and Γ ` join : a′ = a′′ (required by R-Join). This yields (a a′′) ∈ [[[a′/x]φ]]Γ, as required by our inner
induction.

C.5.3 Proof of R-Join

Suppose that a1 ∼Γ a2, and consider arbitrary a ∈ [[[a1/x]Πy : φ ′.φ]]Γ. We must show a ∈ [[[a2/x]Πy :
φ ′.φ]]Γ. It suffices to show (a a′) ∈ [[[a′/y][a2/x]φ]]Γ for an arbitrary a′ ∈ [[[a2/x]φ ′]]+

Γ
. We now wish to

use R-Join at type φ ′ (with smaller depth), with the symmetric equality a2 ∼Γ a1. Symmetry of ∼Γ is
direct from its definition.

Using R-Join in this way with a2 ∼Γ a1, we obtain a′ ∈ [[[a1/x]φ ′]]Γ. We must further obtain a′ ∈
[[[a1/x]φ ′]]+

Γ
. So consider arbitrary σ ∈ [[Γ]]. From closability of a′ at the type involving a2, we have

σa′ ∈ [[σ([a2/x]φ ′)]]. We must show σa′ ∈ [[σ([a1/x]φ ′)]]. If Γ is empty, this formula is equivalent to
a′ ∈ [[[a1/x]φ ′]], which we already have. So suppose Γ is not empty. Then the formula is equivalent
to σa′ ∈ [[[σa1/x](σφ ′)]], since x 6∈ ran(σ). Notice that from our assumption that a1 ∼Γ a2, we obtain
σa1 ∼ σa2. We may now use R-Join, where the length of the context has decreased, to conclude σa′ ∈
[[[σa1/x](σφ ′)]] from σa′ ∈ [[[σa2/x](σφ ′)]].

Since we have obtained a′ ∈ [[[a1/x]φ ′]]+
Γ

, we now get (a a′) ∈ [[[a′/y][a1/x]φ]]Γ by the assumption
above of reducibility of a. Applying Lemma 7 to the fact that Γ ` a′ : [a1/x]φ ′ (which we have from a′ ∈
[[[a1/x]φ ′]]Γ), and using the assumption that x 6∈ dom(Γ), we obtain x 6∈ FV(a′). Since y is locally scoped,
we may also assume that y 6∈ FV(a1) and y 6∈ FV(a2). This tells us that [a′/y][a1/x]φ = [a1/x][a′/y]φ and
also [a′/y][a2/x]φ = [a2/x][a′/y]φ . Using the first of these, we may conclude (a a′) ∈ [[[a1/x][a′/y]φ]]Γ
from the similar fact we had just above. Using the second of these commutations of substitutions, and
also R-Join at type [a′/y]φ (of smaller depth), we can conclude (a a′) ∈ [[[a′/y][a2/x]φ]]Γ, as required.

C.6 Critical properties for ∀x : φ ′.φ

The proofs here are simpler versions (particularly for R-Prog) of those for the previous case.

C.6.1 Proof of R-Pres

Assume a ∈ [[∀x : φ ′.φ]]Γ, and consider an arbitrary a′ ∈ [[φ ′]]+
Γ

. By R-Pres at type [a′/x]φ (with smaller
depth), we obtain next(a) ⊂ [[[a′/x]φ]]Γ. We conclude this for all a′ ∈ [[φ ′]]+

Γ
. Then by the definition of

[[·]], we get the required next(a) ⊂ [[∀x : φ ′.φ]]Γ, using also Type Preservation and the fact next(a) ⊂ SN
(from a ∈ SN).

C.6.2 Proof of R-Prog

Suppose a is neutral with Γ ` a : φ . By assumption, we have

next(a)⊂ [[∀x : φ
′.φ]]Γ

It suffices, by the definition of [[·]], to show that a ∈ SN and for all a′ ∈ [[φ ′]]+
Γ

, a ∈ [[[a′/x]φ]]Γ. We have
a ∈ SN from next(a) ⊂ SN, so we focus on the latter property. Consider arbitrary a′ ∈ [[φ ′]]+

Γ
. By the

definition of [[·]] at ∀-type and our above assumption, we have next(a) ⊂ [[[a′/x]φ]]Γ. So by R-Prog at
type [a′/x]φ (with smaller depth), we have a ∈ [[[a′/x]φ]]Γ, as required.

C.6.3 Proof of R-Join

Suppose that a1 ∼Γ a2, and consider arbitrary a ∈ [[[a1/x]∀y : φ ′.φ]]Γ. We must show a ∈ [[[a2/x]∀y :
φ ′.φ]]Γ. It suffices to show a ∈ [[[a′/y][a2/x]φ]]Γ for an arbitrary a′ ∈ [[[a2/x]φ ′]]+

Γ
. By R-Join at type

φ ′ (with smaller depth), and using the symmetric version of our assumption as above, we have a′ ∈
[[[a1/x]φ ′]]Γ. We further obtain a′ ∈ [[[a1/x]φ ′]]+

Γ
as in the case for R-Prog for Π-types. So we get

a ∈ [[[a′/y][a1/x]φ]]Γ by the assumption of reducibility of a. By similar reasoning as above, we may
permute the substitutions in question. So we may apply R-Join at type [a′/y]φ (of smaller depth) to
conclude a ∈ [[[a′/y][a2/x]φ]]Γ, as required.

C.7 Critical properties for a1 = a2

C.7.1 Proof of R-Pres

Consider arbitrary b with a ; b. We have b ∈ SN from a ∈ SN, and Γ ` b : a1 = a2 by Type Preservation.
Now suppose b ;∗ join. Then we have a ;∗ join and obtain a1 ∼Γ a2 from a ∈ [[a1 = a2]]Γ.

C.7.2 Proof of R-Prog

We have a ∈ SN from next(a)⊂ SN as in other cases above. Suppose that a ;∗ join. Since a is neutral,
we cannot have a≡ join. So we must have a ; b. Then we get b ;∗ join by confluence, and we can
use the assumption that b ∈ [[a1 = a2]]Γ to obtain a1 ∼Γ a2 as required.

C.7.3 Proof of R-Join

Assume a′1 ∼Γ a′2, and assume a ;∗ join. Then we have [a′1/x]a1 ∼Γ [a′1/x]a2 from a ∈ [[[a′1x]a1 =
[a′1/x]a2]]Γ. Consider arbitrary σ ∈ [[Γ]]. Instantiating our two assumptions of joinability under all ground
instances with this σ , we obtain:

• σa′1 ↓ σa′2

• (σ([a′1/x]a1)) ↓ (σ([a′1/x]a2))

The desired result (namely, (σ([a′2/x]a1)) ↓ (σ([a′2/x]a2))) now follows from closure of joinability under
substitution of joinable terms.

D Proof of Soundness (Theorem 3)

D.1 The Closability Lemma

We have carefully crafted our notions of closable terms and closable substitutions to allow the following
two lemmas to be proved. The first expresses the basic desired property of closable substitutions, and
the second shows that under the conditions of the Soundness Theorem, the term σa is closable which
Soundness tells us is in the interpretation of σφ with context ∆.

Lemma 9 (Composing Substitutions). Suppose σ ∈ [[Γ]]∆ and σ ′ ∈ [[∆]]. Then σ ′ ◦σ ∈ [[Γ]].

The proof is by induction on the structure of the derivation of σ ∈ [[Γ]]∆. The base case holds trivially,
noting that σ ′ ◦ /0 = /0. For the step case, we have

a ∈ [[σ ′′φ]]+
∆

σ ′′ ∈ [[Γ′]]∆
σ ′′∪{(x,a)} ∈ [[Γ′,x : φ]]∆

Now we obtain σ ′(σ ′′a) ∈ [[σ ′(σ ′′φ)]], by the definition of closability of a. This implies σ ′(σ ′′a) ∈
[[σ ′(σ ′′φ)]]+, since the definitions of [[·]] and [[·]]+ coincide when the context is empty. By the induction
hypothesis we have σ ′ ◦ σ ′′ ∈ [[Γ′]]∆. So we may reapply the rule to obtain the desired (σ ′ ◦ σ ′′)∪
{(x,σ ′a)} ∈ [[Γ′,x : φ]].

Lemma 10 (Closability). Suppose the following main assumption is true: for any ∆Ok and σ ∈ [[Γ]]∆,
we have (σa) ∈ [[σφ]]∆. In this case, for any such ∆ and σ , we also have (σa) ∈ [[σφ]]+

∆
.

Assume an arbitrary σ ′ ∈ [[∆]]. We must show σ ′(σa) ∈ [[σ ′(σφ)]]. By Composing Substitutions
(Lemma 9), we have σ ′ ◦σ ∈ [[Γ]]. So we may instantiate the main assumption with σ ′ ◦σ to obtain
the the required formula.

D.2 The Proof

The proof of the Soundness Theorem is by induction on the structure of the assumed typing derivation.
We consider all cases, and implicitly start each by assuming an arbitrary σ ∈ [[Γ]]∆. We often will use this
σ to instantiate universal formulas obtained by application of our induction hypothesis, without explicitly
noting that we are instantiating the induction hypothesis. If σ is a substitution, we will write σ [a′/x] for
the substitution that extends σ by mapping x to a′.

Case:

Γ(x)≡ φ

Γ ` x : φ

We prove σx ∈ [[σΓ(x)]]+
∆

by inner induction on the structure of σ ∈ [[Γ]]∆. The base case cannot arise,
since we have Γ(x) defined. For the step case, we have:

a ∈ [[σ ′φ]]+
∆

σ ′ ∈ [[Γ′]]∆
σ ′∪{(y,a)} ∈ [[Γ′,y : φ]]∆

If x ≡ y, then we have σx ∈ [[σ ′Γ(x)]]∆ from the first premise. We just need to show σΓ(x) ≡ σ ′Γ(x).
But this follows from the fact that x 6∈ FV(φ) (by Γ Ok). If x 6≡ y, then by the inner induction hypothesis
we have σ ′x ∈ [[σ ′Γ′(x)]]∆. We must show that this implies the desired σx ∈ [[σΓ(x)]]∆. We certainly
have σ ′x ≡ σx, and Γ′(x) ≡ Γ(x). So it suffices to show that σ ′Γ(x) ≡ σΓ(x). But Γ(x) cannot contain
x, so this holds.

Case:

a ↓ a′

Γ ` join : a = a′

If a ↓ a′, we certainly also have σa ↓ σa′, since joinability is closed under substitution. This gives us
∆ ` join : σa = σa′. Again by closure of joinability under substitution, we have σa ∼∆ σa, since for
any σ ′ ∈ [[∆]], we certainly have σ ′(σa) ↓ σ ′(σa′). We obviously have join ∈ SN, so we conclude
join ∈ [[σ(a1 = a2)]]∆.

Case:

Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)
Γ ` a : [a′′/x]φ

The required conclusion follows by R-Join from σa ∈ [[[σa′/x](σφ)]]∆, which we have from the induc-
tion hypothesis for the second premise. To enable this use of R-Join, we need ∆ ` σa′′′ : σa′ = σa′′

and σa′ ∼∆ σa′′. The former we obtain from σa′′′ ∈ [[σa′ = σa′′]]∆, which we have by the induction
hypothesis for the first premise. The latter we obtain as follows. Consider an arbitrary σ ′ ∈ [[∆]]. From
this and the fact that σ ∈ [[Γ]]∆, we have σ ′ ◦σ ∈ [[Γ]] by Composing Substitutions (Lemma 9).

Since σ ′ ◦σ ∈ [[Γ]], we can use it to instantiate the induction hypothesis for the first premise. This
gives us σ ′(σa′′′)∈ [[σ ′(σa′) = σ ′(σa′′)]], which implies · ` σ ′(σa′′′) : σ ′(σa′) = σ ′(σa′′). So consider
the unique normal form n of σ ′(σa′′′), which exists by confluence and R-SN. We have n ∈ [[σ ′(σa′) =
σ ′(σa′′)]] by repeated application of R-Pres. This implies n : σ ′(σa′) = σ ′(σa′′). By Progress, this n

must be a value. We may now apply Canonical Forms (Lemma ??), to conclude that n ≡ join. Now
by the definition of [[σ ′(σa′) = σ ′(σa′′)]], we have σ ′(σa′) ↓ σ ′(σa′′), as required. We assumed an
arbitrary σ ′ ∈ [[∆]], so we may conclude that σ ′(σa′) ↓ σ ′(σa′′) holds for all such σ ′. This is sufficient
for σa′ ∼∆ σa′′.

Case:

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` a : ∀x : φ ′.φ

From the induction hypothesis, we infer the following, for any σ ′ ∈ [[Γ,x : φ ′]]∆′ , for any ∆′⊂ σ(Γ,x : φ ′):

∀a′ ∈ [[σφ
′]]+

∆
. (σ [a′/x])a ∈ [[(σ [a′/x])φ]]∆ (3)

Our first need is to prove a ∈ SN. For this, we instantiate (3) with ∆′ ≡ ∆,x : σφ ′; σ ′ ≡ σ [x/x]; and
a′ ≡ x. Note that it is at precisely this point that we critically need open substitutions in the statement of
Soundness. To show that this instantiation is legal, we must, of course, prove that σ ′ ∈ [[Γ]]∆′ . For this,
we need two things. First, we need to know that x ∈ [[σφ ′]]+

∆,x:σφ ′ . This follows because x ∈ [[σφ ′]]∆,x:σφ ′

by R-Prog (since next(a) = /0); and further, for any σ ′ ∈ [[∆,x : σφ ′]], we derive from that same fact the
formula σ ′x ∈ [[σ ′(σφ ′)]], which we require for closability of x. Now we use the following lemma (proof
in Section D.3 below) to finish our proof of the intermediate fact σ ′ ∈ [[Γ,x : φ ′]]∆′ :

Lemma 11 (Weakening Substitutions). If σ ∈ [[Γ]]∆ and ∆,y : φ ′Ok, then σ ∈ [[Γ]]∆,y:φ ′ .

Using this intermediate fact σ ′ ∈ [[Γ,x : φ ′]]∆′ , we may indeed instantiate (4) above with σ ′, ∆′ and x for
a′, as mentioned. This gives us σa ∈ [[σφ]]∆′ . By R-SN, we then obtain σa ∈ [[σφ]]∆,x:σφ ′ . From this, we
obtain σa ∈ SN and ∆ ` λx.a : Πx : σφ ′.σφ , which we need to show σa ∈ [[Πx : σφ ′.σφ]]∆.

To complete this case, it suffices to consider arbitrary a′ ∈ [[σφ ′]]+
∆

, and show σa ∈ [[[a′/x]σφ]]∆.
Instantiating (3) with a′, we obtain (σ [a′/x])a ∈ [[(σ [a′/x])φ]]∆. This is equivalent to the goal, thanks to
the following facts about the substitutions in question. Since x 6∈ FV(a), we have (σ [a′/x])a≡ σa. Also,
we have x 6∈ ran(σ) by the following lemma. So we get the desired σa ∈ [[[a′/x]σφ]]∆.

Lemma 12 (Basic Property of Substitutions). σ ∈ [[Γ]]∆ ∧ΓOk ⇒ σ(x) ∈ [[σΓ(x)]]+
∆

The proof is by induction on the structure of the assumed derivation.

Case:

Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` a : [a′/x]φ

This follows immediately from induction hypothesis, and the definition of [[·]] for ∀-types (here, the type
∀x : σφ ′.σφ), using the fact that various substitutions involved commute, as in cases above. We critically
use Closability (Lemma 10), to get σa′ ∈ [[σφ ′]]+

∆
from σa′ ∈ [[σφ ′]]∆.

Case:

Γ,x : φ ′ ` a : φ

Γ ` λx.a : Πx : φ ′.φ

We begin just as for the (spec-abs) case. From the induction hypothesis, we infer the following, for
any σ ′ ∈ [[Γ,x : φ ′]]∆′ , for any ∆′ ⊂ σ(Γ,x : φ ′):

∀a′ ∈ [[σ ′φ ′]]+
∆′ . (σ ′[a′/x])a ∈ [[(σ ′[a′/x])φ]]∆′ (4)

By the same reasoning as for the (spec-abs) case, we obtain σa ∈ SN and ∆ ` λx.a : Πx : σφ ′.σφ .
Now by the definition of [[·]], it suffices to prove that for all a′ ∈ [[σφ ′]]+

∆
, we have ((λx.(σa)) a′) ∈

[[[a′/x](σφ)]]∆. We prove that (4) implies this, by inner induction on ν(σa)+ν(a′), which is defined by
R-SN (for σa and a′). By R-Prog, it suffices to prove next((λx.(σa)) a′) ⊂ [[[a′/x](σφ)]]∆, since the
term in question (i.e., ((λx.(σa)) a′)) is neutral and appropriately typable since σa is. In more detail,
since we have σa ∈ [[σφ]]∆,x:σφ ′ , we obtain ∆,x : σφ ′ ` σa : σφ . Then we apply the typing rule for
λ -abstractions to obtain ∆ ` λx.σa : Πx : σφ ′.σφ , and we conclude the typing proof with the application
rule on this fact and ∆ ` a′ : σφ ′.

Now the possibilities for reduction of the term in question are summarized by:

next((λx.σa) a′) ⊂ ((λx.next(σa)) a′) ∪ ((λx.σa) next(a′)) ∪ {[a′/x]σa}

We have ((λx.next(σa)) a′) ⊂ [[[a′/x](σφ)]]∆ by the inner induction hypothesis, using R-Pres to con-
clude next(σa)⊂ [[σφ ′]]∆. For the set ((λx.σa) next(a′)), we use the inner induction hypothesis to con-
clude that for all a′′ ∈ next(a′), we have ((λx.σa) a′′) ∈ [[[a′′/x](σφ)]]∆. Applying the induction hypoth-
esis here requires the fact that a′′ ∈ [[σφ ′]]∆, which follows by R-Pres. Now we may apply R-Join with
a′ ∼∆ a′′ and ∆ ` join : a′ = a′′ (which follow from a′ ; a′′), to obtain ((λx.σa) a′′) ∈ [[[a′/x](σφ)]]∆.
This implies ((λx.σa) next(a′))⊂ [[[a′/x](σφ)]]∆, as required.

Finally, we wish to conclude [a′/x]σa ∈ [[[a′/x](σφ ′)]]∆ by instantiating (4) above with ∆′ ≡ ∆; σ ′ ≡
σ ; and a′ ≡ a′. We have the required a′ ∈ [[σφ ′]]+

∆
, of course. But we also need the fact that (σ [a′/x])φ ′ =

[a′/x](σφ ′). This holds because x 6∈ ran(σ) (by Lemma 12, as in an earlier case). So we conclude the
desired [a′/x]σa ∈ [[[a′/x](σφ ′)]]∆.

Case:

Γ ` a : Πx : φ ′.φ Γ ` a′ : φ ′

Γ ` (a a′) : [a′/x]φ

By the induction hypothesis, we have σa∈ [[Πx : σφ ′.σφ]]∆ and σa′ ∈ [[σφ ′]]∆. By Closability (Lemma 10),
we then get σa′ ∈ [[σφ ′]]+

∆
. Then using the definition of [[·]] at Π-type, we directly obtain ((σa) (σa′)) ∈

[[[σa′/x]σφ]]Γ. Since x 6∈ ran(σ) (by Lemma 12), we get from this the desired conclusion, namely
σ(a a′) ∈ [[σ([a′/x]φ)]]Γ.

Case:

Γ ` 0 : nat

Since 0 is a normal form, we have 0 ∈ SN and ∆ ` 0 : nat, which suffices for this case.

Case:

Γ ` nil : 〈vec φ 0〉

Since nil is a normal form, we have nil ∈ SN, and of course, ∆ ` nil : 〈vec σφ 0〉. For the second
conjunct of the definition of [[·]] at vec-type, we have 0 ↓ 0. For the third conjunct, assume nil ;∗

(cons a a′) for some a and a′. This is easily shown to be impossible, since reduction cannot possibly
turn nil into a cons-term.

Case:

Γ ` a : nat
Γ ` (S a) : nat

By the induction hypothesis, we have σa ∈ [[nat]]∆, which is equivalent to the conjunction of σa ∈ SN
and ∆ ` σa : nat. This implies (S σa) ∈ SN and ∆ ` (S σa) : nat, which suffices.

Case:

Γ ` a′′ : nat
Γ ` a : [0/x]φ
Γ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ ` (Rnat a a′ a′′) : [a′′/x]φ

By the induction hypothesis, we have

• σa′′ ∈ [[nat]]∆

• σa ∈ [[σ [0/x]φ]]∆

• σa′ ∈ [[Πy : nat.Πu : σ([y/x]φ). σ([(Sy)/x]φ)]]∆

We will prove that for any b∈ [[nat]]∆, and assuming the second two of these facts, we have (Rnat (σa) (σa′) b)∈
[[[b/x]σφ]]∆. The proof is by inner induction on the measure ν(σa)+ ν(σa′)+ ν(b)+ l(b). Our mea-
sure is defined, since all the terms involved are reducible and hence strongly normalizing by R-SN. By
R-Prog, it suffices to prove next(Rnat (σa) (σa′) b)⊂ [[[b/x]σφ]]∆, since the term in question is neutral
and appropriately typable. The possibilities for reduction are summarized by:

(Rnat (σa) (σa′) b) ⊂ (Rnat next(σa) (σa′) b) ∪
(Rnat (σa) next(σa′) b) ∪
(Rnat (σa) (σa′) nextb) ∪
{(σa) | b≡ 0} ∪
{((σa′) b′ (Rnat (σa) (σa′) b′)) | b≡ (S b′)}

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for
when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis
and R-Pres. For the third, we do the same, except also apply R-Join with b∼∆ b′ for b′ ∈ next(b). This
ensures that we have (Rnat (σa) (σa′) next(b)) ⊂ [[[b/x]σφ]]∆ (the critical point being that we have b
in the type, and not some b′ ∈ next(b)). The fourth case follows by our assumption that σa ∈ [[[0/x]φ]]∆
(note that in this case that the type in question is equivalent to the desired [b/x]φ). For the fifth case, we
have (Rnat (σa) (σa′) b′) ∈ [[[b′/x]σφ]]Γ by the inner induction hypothesis, using the fact that b ∈ SN
and b = (S b′) implies b′ ∈ SN; and this then implies b′ ∈ [[nat]]∆ by definition of [[·]]. Note that we
obtain ∆ ` b′ : nat from ∆ ` (S b′) : nat, by applying Simplifying Inversion (Lemma 4 above). By the
definition of [[·]] at Π-type and our hypothesis that σa′ is reducible at the appropriate Π-type, we have
that the given term is in the set [[[(S b′)/x]φ]]∆, which is equal to the desired [[[b/x]φ]]Γ.

Case:

Γ ` a : φ

Γ ` a′ : 〈vec φ l〉
Γ ` (cons a a′) : 〈vec φ (S l)〉

By the induction hypothesis, we have σa ∈ [[φ]]∆ and σa′ ∈ [[〈vec σφ σ l〉]]Γ. By R-SN, these facts im-
ply σa∈ SN and σa′ ∈ SN, respectively, and hence σ(cons a a′)∈ SN. We also have ∆ ` σ(cons a a′) :
〈vec σφ (S σ l)〉. We must show the conjuncts of the definition of [[·]] at vec-type to conclude
(cons (σa) (σa′)) ∈ [[〈vec φ (S l)〉]]∆. The second conjunct is vacuously true, since we cannot have
(cons a a′) ;∗ nil. The third conjunct follows directly from our assumptions.

Case:

Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ

This case is similar to that for Rnat above, although it is for this case that we have the various clauses of
the definition of [[·]] at vec-type. By the induction hypothesis, we have

• σa′′ ∈ [[σ〈vec φ ′ l〉]]∆

• σa ∈ [[σ [0/y,nil/x]φ]]∆

• σa′ ∈ [[σΠz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .[(S l)/y,(cons z v)/x]φ]]∆

It is sufficient to prove that for any l, for any b ∈ [[〈vec φ ′ l〉]]∆, and assuming the second two of these
facts, we have (Rvec (σa) (σa′) b) ∈ [[[l/y,b/x]σφ]]∆. The proof is by inner induction on the measure
ν(σa)+ ν(σa′)+ ν(b)+ l(b). As above, this measure is defined, by R-SN. By R-Prog, it suffices to
prove next(Rvec (σa) (σa′) b)⊂ [[[l/y,b/x]σφ]]∆, since the term in question is neutral and appropriately
typable. The possibilities for reduction are summarized by:

(Rvec (σa) (σa′) b) ⊂ (Rvec next(σa) (σa′) b) ∪
(Rvec (σa) next(σa′) b) ∪
(Rvec (σa) (σa′) nextb) ∪
{(σa) | b≡ nil} ∪
{((σa′) b′ b′′ (Rvec (σa) (σa′) b′′)) | b≡ (cons b′ b′′)}

The first three cases are for when the reduction is due to reduction in a subterm. The second two are
for when the term in question is itself a redex. For the first two cases, we use the inner induction
hypothesis and R-Pres. For the third, we also apply R-Join as in the Rnat case above, to ensure that
we have (Rvec (σa) (σa′) next(b)) ⊂ [[[b/x]σφ]]Γ. The fourth case follows by our assumption that
σa ∈ [[[0/y,nil/x]φ]]Γ. By the definition of [[·]] at vec-type, we have l ∼Γ 0; so we can apply R-Join
and the fact that b = nil to obtain a ∈ [[[l/y,b/x]φ]]Γ, as required.

We now consider the fifth case. First, since b = (cons b′ b′′) and b ∈ [[〈vec φ ′ l 〉]]Γ, the definition
of [[·]] at vec-type gives us the following facts for some l′:

• b′ ∈ [[φ ′]]∆

• b′′ ∈ [[〈vec φ ′ l′〉]]∆

• l ∼Γ (S l′)

We next apply the inner induction hypothesis to obtain (Rvec (σa) (σa′) b′′) ∈ [[[l′/y,b′′/x]σφ]]∆; this
is legal, since the measure has decreased (in particular, l(b′′) < l(b)). With this obtained, we use the
definition of [[·]] at Π-type and our hypothesis that σa′ is reducible at the appropriate Π-type. So we
obtain the fact that the given term is in the set [[[(S l′))/y,(cons b′ b′′)/x]φ]]∆. We can then use R-Join
with the fourth assumed formula above, and the fact that b = (cons b′ b′′), to get that the term is in the
desired [[[l/y,b/x]φ]]∆.

D.3 Proof of Weakening Substitutions (Lemma 11)

The proof is by induction on the structure of the assumed derivation of σ ∈ [[Γ]]∆. The base case is trivial.
For the step case, we have:

a ∈ [[σ ′φ]]+
∆

σ ′ ∈ [[Γ′]]∆
σ ′∪{(x,a)} ∈ [[Γ′,x : φ]]∆

The induction hypothesis gives us σ ′ ∈ [[Γ′]]∆,y:φ ′ . We just need a ∈ [[σ ′φ]]+
∆,y:φ ′ , and we can reapply the

rule to get the desired result. For this, we use the following lemma:

Lemma 13 (Weakening for Closable Terms). Suppose ∆,y : φ ′Ok. Then a ∈ [[φ]]+
∆

implies a ∈ [[φ]]+
∆,y:φ ′ .

Now we apply the following lemma to complete the proof, noting that the variable y of interest here is
not in the free variables of a or φ , and so the assumption implies the required universal formula:

Lemma 14 (Weakening-Strengthening for Interpretations). Suppose a ∈ [[φ]]+
∆

. Then we have a ∈
[[φ]]+

∆,y:φ ′ iff for all a′ ∈ [[φ ′]]+
∆

, we have [a′/y]a ∈ [[[a′/y]φ]]+
∆

.

The proof makes frequent use of the following lemma, which we prove briefly first:

Lemma 15 (Weakening-Strengthening for Ground Joinability). Suppose (∆,y : φ ′)Ok. Then we have
a1 ∼∆,y:φ ′ a2 iff for all a′ ∈ [[φ ′]]∆, we have [a′/y]a1 ∼∆ [a′/y]a2.

First, suppose a1∼∆,y:φ ′ a2, and consider arbitrary σ ′ ∈ [[∆]] and a′ ∈ [[σ ′φ ′]]. Then we have (σ ′◦ [a′/y])∈
[[∆,y : φ ′]] by Composing Substitutions (Lemma 9). We can then use a1 ∼∆,y:φ ′ a2 to get (σ ′([a′/y]a1)) ↓
(σ ′([a′/y]a2, as required.

Second, suppose that for all a′ ∈ [[φ ′]]∆, we have [a′/y]a1∼∆ [a′/y]a2, and show a1∼∆,y:φ ′ a2. Assume
arbitrary σ ∈ [[∆,y : φ ′]]. Then for some σ ′ and a′ ∈ [[σ ′φ]], we have σ ≡ σ ′[a′/y]. Instantiating our
assumption with this a′ and then σ ′, we obtain the desired conclusion.

We now turn to the main proof for Weakening-Strengthening, which is by induction on (|Γ|,d(φ), l(a)).
In all cases, the typing statement in question follows by either Weakening (Lemma 6) or Substitution
(Lemma 5), so we omit consideration of typing below. Strong normalization of the substitution instances
follows from the definition of closability (and the assumption that a is a closable term in context ∆,y : φ ′).

Case: φ ≡ nat.

This case is trivial.

Case: φ ≡ 〈vec φ l〉.

These cases follow easily by Weakening-Strengthening for Ground Joinability (Lemma 15) and the in-
duction hypothesis.

Case: φ ≡Πx : ψ.ψ ′.

First, assume a ∈ [[φ]]+
∆,y:φ ′ , and show [a′/y]a ∈ [[[a′/y]φ]]+

∆
for an arbitrary a′ ∈ [[φ ′]]+

∆
. It suffices to

consider arbitrary a′′ ∈ [[[a′/y]ψ]]+
∆

, and show (([a′/y]a) a′′) ∈ [[[a′′/x][a′/y]ψ ′]]+
∆

. Since y 6∈ FV(a′′), we
certainly have [â/y]a′′ ∈ [[[â/y][a′/y]ψ]]+

∆
for all â ∈ [[φ ′]]+

∆
. So we may apply the induction hypothesis to

conclude a′′ ∈ [[[a′/y]ψ]]+
∆,y:φ ′ . Now we may use our assumption of reducibility of a in context ∆,y : φ ′

to conclude (a a′′) ∈ [[[a′′/y]ψ ′]]∆,y:φ ′ . To obtain (a a′′) ∈ [[[a′′/y]ψ ′]]+
∆,y:φ ′ from this, assume an arbitrary

partition (∆1,∆2) ≡ (∆,y : φ ′), and arbitrary σ ∈ [[∆2]]∆1 . We must show σ(a a′′) ∈ [[σ [a′′/y]ψ ′]]∆1 . If
∆2 is empty, this statement is equivalent to the fact (a a′′) ∈ [[[a′′/y]ψ ′]]∆,y:φ ′ , which we already have. So
suppose ∆2 ends in y : φ ′. Then y 6∈ ran(σ). Also, y 6∈ FV(a′′), so our current goal formula is equivalent
to ((σa) a′′) ∈ [[[a′′/y](σψ ′)]]∆1 . Instantiating our assumption of closability of a with σ |dom(∆1), we
obtain σa ∈ [[σφ]]∆1 . This is then sufficient for the desired conclusion, since we easily obtain σa′′ ∈
[[σ [a′/y]ψ]]+

∆1
from our assumption of closability of a′′ in context ∆. Having obtained (a a′′) closable,

we may now apply the induction hypothesis again, to obtain (([a′/y]a) a′′) ∈ [[[a′/y][a′′/x]ψ ′]]∆, noting
again that y 6∈ FV(a′′). Closability of a and a′′ again imply closability of this final term.

Now assume that for all a′ ∈ [[φ]]+
∆

, we have [a′/y]a ∈ [[[a′/y]φ]]+
∆

; and show a ∈ [[φ]]+
∆,y:φ ′ . It suffices

to consider arbitrary a′′ ∈ [[ψ]]+
∆,y:φ ′ , and show (a a′′) ∈ [[[a′′/x]ψ ′]]∆,y:φ ′ . By the induction hypothesis, we

have [a′/y]a′′ ∈ [[[a′/y]ψ]]+
∆

for any a′ ∈ [[φ ′]]∆. Consider arbitrary such a′. We have ([a′/y]a [a′/y]a′′) ∈
[[[[a′/y]a′′/x][a′/y]ψ ′]]∆ by reducibility of [a′/y]a in context ∆. Closability of a and a′′ in context (∆,y : φ ′)
again imply closability of this term. This is true for any a′, so we may apply the induction hypothesis
again to conclude (a a′′)∈ [[[a′′/x]ψ ′]]∆, and again obtain closability as above, for the required conclusion.

Case: φ ≡ ∀x : ψ.ψ ′.

This case is very similar to the previous one, so we omit it.

Case: a1 = a2.

This follows by Weakening-Strengthening for Ground Joinability (Lemma 15).

E Proof of Corollaries of Theorem 3

E.1 Proof of Strong Normalization (Corollary 5)

By Soundness for Interpretations, we have σa ∈ [[σφ]]∆ for all ∆ and σ with ∆⊂ σΓ and σ ∈ [[Γ]]∆. We
instantiate this by taking Γ for ∆ and the identity substitution id on dom(Γ) for σ . We have id ∈ [[Γ]]Γ,
since for all x ∈ dom(Γ), we have x ∈ [[Γ(x)]]+

Γ
by R-Prog and the fact that if σ ′ ∈ [[Γ]], then by that

assumption, we get σ ′x ∈ [[σ ′Γ(x)]], which is needed for closability of x. This instantiation yields a ∈
[[φ]]Γ, which implies a ∈ SN by R-SN.

φ 7−→ φ when φ is α , nat, or a1 = a2

φ 7−→ φ ′

〈vec φ l〉 7−→ 〈vec φ ′ l〉

φ1 7−→ φ ′1
φ2 7−→ φ ′2

Πx : φ1.φ2 7−→Πx : φ ′1.φ
′
2

φ1 7−→ φ ′1
φ2 7−→ φ ′2

∀x : φ1.φ2 7−→ ∀x : φ ′1.φ
′
2

φ1 7−→ φ ′1
φ2 7−→ φ ′2

R b φ1 (α.φ2) 7−→ (R b φ ′1 (α.φ ′2))
rwrR−cong

b ;∗ (S n)
φ1 7−→ φ ′1
φ2 7−→ φ ′2

R b φ1 (α.φ2) 7−→ [R n φ ′1 (α.φ ′2)/α]φ ′2
rwrR−beta2

b ;∗ 0
φ1 7−→ φ ′1

R b φ1 (α.φ2) 7−→ φ ′1
rwrR−beta1

α
∗ = α

nat∗ = nat

(a1 = a2)∗ = (a1 = a2)
〈vec φ l〉∗ = 〈vec φ

∗ l〉
(Πx : φ1.φ2)∗ = Πx : φ

∗
1 .φ ∗2

(∀x : φ1.φ2)∗ = ∀x : φ
∗
1 .φ ∗2

(R b φ1 (α.φ2))∗ =


[R n φ ∗1 (α.φ ∗2)/α]φ ∗2 if b ;∗ (S n) for some n
φ ∗1 if b ;∗ 0
(R b φ ∗1 (α.φ ∗2)) otherwise

Figure 9: Full definition of φ 7−→ φ ′, and complete development φ ∗.

E.2 Proof of Equational Soundness (Theorem 3)

By Type Preservation, Progress, and Canonical Forms, we obtain a ;∗ join. By Inversion, the only
possible derivations are (conv) inferences starting with a join-introduction. This implies b1 ↓ b2,
because joinability is closed under substitution of joinable terms. An easy corollary is:

F Proofs for section 5 (Large Eliminations)

F.1 Proof of lemma 1 (Existence and uniqueness of Oφ)

We define type rewriting (unfolding of recursive types) and complete development as in figure 9. Note
that the function (·)∗ is well-defined by confluence of ;∗.

Showing that 7−→∗ is confluent is routine[10]:

Lemma 16. If φ 7−→ φ ′ and ψ 7−→ ψ ′, then [ψ/α]φ 7−→ [ψ ′/α]φ ′

Proof. Easy induction.

Lemma 17. For all types φ , we have φ 7−→ φ and φ 7−→ φ ∗.

Proof. Easy inductions.

Lemma 18 (Single-step diamond property). If φ 7−→ φ ′, then φ ′ 7−→ φ ∗.

Proof. By induction on structure of φ .

• If φ is α , nat, or (a1 = a2), then phi′ = φ ∗ = φ .

• If φ is 〈vec φ l〉, (Πx : φ1.φ2), or (∀x : φ1.φ2), this follows directly by IH and lemma 17.

• If φ is R b φ1 (α.φ2), there are three cases, namely b 6;∗ n, b ;∗ (S n′), or b ;∗ 0. If b 6;∗ n,
the only rule that could have applied is rwrR-cong, so we have φ ′ = (R b φ ′1 (α.φ ′2)). By IH
φ ′1 ; φ ∗1 and φ2 ; φ ∗2 , so we conclude by reapplying rwrR-cong.

If b ;∗ (S n), φ ∗ = [R n φ ∗1 (α.φ ∗2)/α]φ ∗2 . By confluence of ;∗ we know b 6;∗ 0, so the two rules
that could have applied are rwrR-cong and rwr-beta2. If the former, φ ′= [R n φ ′1 (α.φ ′2)/α]φ ′2
and by IH φ ′1 7−→ φ ∗1 and φ2 7−→ φ ∗2 , so by rwrR-cong and lemma 16, φ ′ 7−→ φ ∗. If the latter, we
have φ ′ = (R b φ ′1 (α.φ ′2)) and a ;∗ (S n). By IH φ ′1 7−→ φ ∗1 and φ2 7−→ φ ∗2 and we get φ ′ 7−→ φ ∗

by rwrR-beta2.

If b ;∗ 0, φ ∗ = φ ∗1 . By confluence b 6;∗ (S n), so the two rules that could have applied are
rwrR-cong and rwr-beta1. In the first case the desired conclusion follows by IH and rwr-beta1,
in the second directly by IH.

Corollary 7. 7−→∗ is confluent.

Lemma 19 (Weak normalization of types). For every type φ there exists a φ ′ such that φ 7−→∗ φ ′ and
φ ′ 67−→.

Proof. Define a redex to be a subexpression of φ of the form (R b φ1 (α.φ2)) where b ;v n for some n.
We claim that the following inner-most first reduction strategy will always terminate: in each iteration,
pick a redex such that φ1 (if n = 0) or φ2 (if n = S n′) does not contain any redexes, and reduce that. To
see that this process terminates, assign to each φ as termination measure the multiset of all redexes in
φ under the multiset ordering[?], where the individual redexes are ordered by n. Each step deletes one
redex from the multiset, and adds only redexes where n is decreased.

It follows that every type φ has a unique normal form, which we will write Oφ .

F.2 Proof of Lemma 2 (Properties of unfold)

Lemma 20. If φ 7−→ φ ′, then σφ 7−→ σφ ′.

Proof. Induction on φ 7−→ φ ′. The congruence rules follow immediately by IH, so the only interesting
case is

b ;∗ (S n)
φ1 7−→ φ ′1
φ2 7−→ φ ′2

R b φ1 (α.φ2) 7−→ [R n φ ′1 (α.φ ′2)/α]φ ′2

By substitution for ; we have σb ;∗ σ(S n) = (S n). The conclusion then follows directly by IH.

Lemma 21 (Properties of type unfolding). • If a ;∗ n, then O(R a φ (α.φ ′)) = O(R n φ (α.φ ′)).

• If Oφ1 = Oφ2, then O[φ1/α]ψ = O[φ2/α]ψ .

• O〈vec φ a〉= 〈vec φ Oa〉, O(∀x : φ ′.φ) = ∀x : Oφ ′.Oφ , and O(Πx : φ ′.φ) = Πx : Oφ ′.Oφ .

• For all σ , φ , we have OσOφ = Oσφ .

Proof. The first property follows by a case-split on whether n = 0 or n = S n′. The second property
follows since by lemma 16, the types [φ1/α]ψ and [φ2/α]ψ both reduce to the common intermediate
type [Oφ1/α]ψ . For the third property, note that by the congruence rules 〈vec φ a〉 7−→∗ 〈vec Oφ a〉,
and by inspection of the definition of 7−→, 〈vec Oφ a〉 67−→.

For the fourth property, by lemma 20 and induction on φ 7−→∗ Oφ we get σφ 7−→∗ σOφ . But we
also know σφ 7−→∗ Oσφ , and Oσφ is normal, so by confluence σOφ 7−→∗ Oσφ . Therefore OσOφ =
Oσφ .

Lemma 22. If a1 ↓ a2, then for any φ there exists a ψ such that O[a1/x]φ = [a1/x]ψ and O[a2/x]φ =
[a2/x]ψ .

Proof. Intuitively, we create ψ by applying the substitution to the b in all subexpressions (R b φ1 (α.φ2))
in φ wherever that would create a redex, and then normalize the resulting type.

Formally, it suffices to prove that if a1 ↓ a2 and [a1/x]φ 7−→ ψ , then there exists a φ ′ such that
ψ = [a1/x]φ and [a2/x]φ 7−→ [a2/x]φ ′. This is proved by induction on [a1/x]φ 7−→ ψ . The proof relies
on that fact that if [a1/x]b ;∗ n and a1 ↓ a2, then [a2/x]b ;∗ n.

F.3 Proof of Lemma 24 (Characterization of [[]])

Lemma 23 (Interpretation and unfolding). • For all φ , [[φ]] = [[Oφ]]

• For all σ and φ , [[Oσφ]] = [[σOφ]].

Proof. The first property follows by a case-split on whether φ steps. If φ does not step, Oφ = φ . If it
does step, [[φ]] = [[Oφ]] by the definition of [[]].

For the second property, note that by the first property [[σOφ]] = [[OσOφ]]. But by lemma 21,
OσOφ = Oσφ .

Lemma 24 (Interpretation of value types). For all value types φ (not just types such that φ 67−→), the
equivalences in figure 8 hold.

Proof. If φ is nat or a1 = a2, this is immediate. If φ = Πx : φ1.φ2 we get,

a ∈ [[Πx : φ1.φ2]]⇔ a ∈ [[OΠx : φ1.φ2]] lemma 23

⇔ a ∈ [[Πx : Oφ1.Oφ2]] lemma 21

⇔ ∃a′.a ;∗
v (λx.a′)

∧ ∀a′ ∈ [[Oφ ′]]. (a a′) ∈ [[[a′/x]Oφ]]
Since (Πx : Oφ1.Oφ2) 67−→.

⇔ ∃a′.a ;∗
v (λx.a′)

∧ ∀a′ ∈ [[Oφ ′]]. (a a′) ∈ [[O[a′/x]φ]]
lemma 23

⇔ ∃a′.a ;∗
v (λx.a′)

∧ ∀a′ ∈ [[φ ′]]. (a a′) ∈ [[[a′/x]φ]]
lemma 23

The cases φ = ∀x : φ1.φ2 and φ = 〈vec φ1 l〉 are similar.

F.4 Proof of Critical Properties

R-Canon. If a ∈ [[φ]], then a ;∗
v v for some v. Furthermore, if φ is a value type (i.e. nat, Π, ∀, =, or

vec), then v is the corresponding introduction form.

Proof. Immediate from lemma 24 and the definition of [[]].

R-Pres. If a ∈ [[φ]] and a ;v a′, then a′ ∈ [[φ]].

Proof. Using that [[φ]] = [[Oφ]] we can assume without loss of generality that φ 67−→. We proceed by
induction on the depth of φ .

The clauses of the form a ;∗
v are all proven in the same way: for instance if a ;∗

v n and a ;v a′,
then a′ ;∗

v n by determinacy of ;v. This takes care of all cases except Π and ∀.
For Πy : φ ′.φ , we also need to show ∀a′′ ∈ [[φ ′]]. (a′ a′′) ∈ [[[a′′/x]φ]]. Let a′′ ∈ [[φ ′]]. By assumption

we know (aa′′) ∈ [[[a′′/x]φ]]. But (aa′′) ;v (a′a′′), so by the IH at the type [a′′/x]φ (which is of lower
depth) (a′a′′) ∈ [[[a′′/x]φ]] as required.

The case ∀y : φ ′.φ is similar to the above case: we need to show (a′) ∈ [[[a′′/x]φ]] and use that
(a) ;v (a′).

R-Prog. If a ;v a′, and a′ ∈ [[φ]], then a ∈ [[φ]].

Proof. Using that [[φ]] = [[Oφ]] we can assume without loss of generality that φ 67−→. We proceed by
induction on the depth of φ .

The clauses of the form a ;∗
v v are all proven in the same way: for instance if a′ ;∗

v n and a ;v a′,
then a′ ;∗

v n. This takes care of all cases except Π and ∀.
For Πy : φ ′.φ , we also need to show ∀a′′ ∈ [[φ ′]]. (a a′′) ∈ [[[a′′/x]φ]]. Let a′′ ∈ [[φ ′]]. By assumption

(a′a′′) ∈ [[[a′′/x]φ]]. But (aa′′) ;v (a′a′′), so by IH at the type [a′′/x]φ (which is of lower depth), (aa′′) ∈
[[[a′′/x]φ]] as required.

The case ∀y : φ ′.φ is similar to the above case: we need to show (a)∈ [[[a′′/x]φ]] and use (a) ;v (a′).

R-Join. If a1 ↓ a2, then a ∈ [[[a1/x]φ]] implies a ∈ [[[a2/x]φ]].

Proof. Using [[φ]] = [[Oφ]] and lemma 22, we can assume without loss of generality that [a1/x]φ 67−→.
We proceed by induction on the depth of φ .

• nat. Trivially true since [a1/x]nat= [a2/x]nat= nat.

• 〈vec φ l〉. By assumption a∈ [[〈vec φ l]], so either a ;∗
v nil and [a1/x]l ;∗ 0, or a ;∗

v (cons v v′)
and [a1/x]l ;∗ (S n) with v ∈ [[[a1/x]φ]] and v′ ∈ [[〈 [a1/x]φ n〉]].
In the first case, note that joinability implies [a2/x]l ;∗ 0. In the second case, joinability gives
[a2/x] ;∗ (S n), and the IH gives v ∈ [[[a2/x]φ]] and v′ ∈ [[〈vec [a2/x]φ n〉]].

• Πy : φ ′.φ . The first conjunct is the same for both [a1/x]φ and [a2/x]φ . For the second conjunct, let
a′ ∈ [[[a2/x]φ ′]]. By IH a′ ∈ [[[a1/x]φ ′]], so (a a′) ∈ [[[a′/y][a1/x]φ]]. Since y was a bound variable
we can choose it such that a′ 6∈ FV(a1)∪{x}, so [a′/y][a1/x]φ = [a1/x][a′/y]φ . By IH applied to
[a′/y]φ (which is of lower depth), (aa′) ∈ [[[a2/x][a′/y]φ]] as required.

• ∀y : φ ′.φ . Similar to the previous case.

• b1 = b2. We need to show that [a1/x]b1 ↓ [a1/x]b2 implies [a2/x]b1 ↓ [a2/x]b2, which is true.

• (R b φ1 (α.φ2)). Vacuously true.

F.5 Proof of Theorem 6 (Fundamental Lemma for Large Eliminations version of [[]])

Case:

Γ(x)≡ φ

Γ ` x : φ

Immediate by σ ∈ [[Γ]].

Case:

Γ ` a : φ Γ ` a′ : φ ′ a ↓ a′

Γ ` join : a = a′

join is a value of the right form. We get σa ↓ σa′, since joinability is closed under substitution. We get
∃vi.σai ;∗

v vi by IH and R-Canon.

Case:

Γ ` a′′′ : a′ = a′′ Γ ` a : [a′/x]φ x 6∈ dom(Γ)
Γ ` a : [a′′/x]φ

By the IH from the second premise we have σa ∈ [[[σa′/x](σφ)]]. By the IH from the first premise we
have σa′′′ ∈ [[σ(a′ = a′′)]], so σa′ ↓ σa′′. So by R-Join, σa ∈ [[[σa′′/x]/ψ]] = [[[σa′′/x](σφ)]].

Case:

Γ,x : φ ′ ` a : φ x 6∈ FV(a)
Γ ` (λa) : ∀x : φ ′.φ

(λa) is a value of the right form. We must show (λa) ∈ [[∀x : σφ ′.σφ]].
Consider some a′ ∈ [[σφ ′]]. By R-Prog, it suffices to show a ∈ [[[a′/x]σφ]], since ((λa)) ;v a. Let

σ ′ = σ ∪{(x,a′)}. Then σ ′ ∈ [[Γ,x : φ ′]], so by IH we have σ ′a ∈ [[σ ′φ]], that is σa ∈ [[[a′/x]σ ′φ]]

Case:

Γ ` a : ∀x : φ ′.φ Γ ` a′ : φ ′

Γ ` (a) : [a′/x]φ

This follows immediately from induction hypothesis, and the characterization of [[·]] for ∀-types (lemma
24).

Case:

Γ,x : φ ′ ` a : φ

Γ ` λx.a : Πx : φ ′.φ

λx.a is a value of the right form. We must show (λx.a) ∈ [[Πx : σφ ′.σφ]].
Consider some a′ ∈ [[σφ ′]]. We must show (λx.σa)a′ ∈ [[[a′/x]σφ]]. By R-Prog it suffices to show

that it steps to a term in [[[a′/x]σφ]].
By R-Canon, a′ ; v′ for some v′. We proceed by the number of steps a′ takes to normalize. In the

base case a′ is already a value. Then (λx.σa)a′;v [a′/x]σa = σ ′a where σ ′ = σ ∪{(x,a′)}. σ ′ ∈ [[Γ,x :
φ ′]], so by IH σ ′a ∈ [[σ ′φ]].

In the step case, a′ ;v a′′ for some a′′, so (λx.σa)a′ ;v (λx.σa)a′′. By R-Pres, a′′ ∈ [[σφ ′]], so the
inner IH applies and (λx.σa)a′′ ∈ [[[a′′/x]σφ ′]]. But a′ ;v a′′, so a ; a′′, so a′ ↓ a′′, so R-Join applies
and (λx.σa)a′′ ∈ [[[a′/x]σφ ′]] as required.

Case:

Γ ` a : Πx : φ ′.φ Γ ` a′ : φ ′

Γ ` (a a′) : [a′/x]φ

This follows immediately from induction hypothesis, and the characterization of [[·]] for Π-types (lemma
24).

Case:

Γ ` 0 : nat

0 is a value of the right form.

Case:

Γ ` a : nat
Γ ` (S a) : nat

By the induction hypothesis, we have σa ∈ [[nat]], so by R-Canon σa ;∗
v n. Then (S σa) ;∗

v (Sn),
which is a value of the right form.

Case:

Γ ` a′′ : nat
Γ ` a : [0/x]φ
Γ ` a′ : Πy : nat.Πu : [y/x]φ .[(Sy)/x]φ

Γ ` (Rnat a a′ a′′) : [a′′/x]φ

By the induction hypothesis, we have

• σa′′ ∈ [[nat]]

• σa ∈ [[σ [0/x]φ]]

• σa′ ∈ [[Πy : nat.Πu : σ([y/x]φ). σ([(Sy)/x]φ)]]

We will prove that for any b∈ [[nat]], and assuming the second two of these facts, we have (Rnat (σa) (σa′) b)∈
[[[b/x]σφ]]. The proof is by inner induction on the measure ν(σa)+ν(σa′)+ν(b)+ l(b). Our measure
is defined, since all the terms involved are normalizing by R-Canon.

By R-Prog, it suffices to prove that Rnat (σa) (σa′) b steps to a term in [[[b/x]σφ]]. The terms (σa),
(σa′), and b are all in [[·]], so by R-Canon each of them either steps or is a value. By considering the
cases, one of the following must be the case:

Rnat (σa) (σa′) b ;v Rnat c (σa′) b where (σa) ;v c
Rnat v (σa′) b ;v Rnat v c′ b where (σa′) ;v c′

Rnat v v′ b ;v Rnat v v′ c where b ;v c
Rnat v v′ 0 ;v v
Rnat v v′ (S n) ;v v′ n (Rnat v v′ n)

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for
when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis
and R-Pres. For the third, we do the same, except also apply R-Join with b ↓ c. This ensures that we
have (Rnat (σa) (σa′) b)∈ [[[b/x]σφ]] (the critical point being that we have b in the type, and not c) The
fourth case follows by our assumption that σa ∈ [[[0/x]φ]] (note that in this case that the type in question
is equivalent to the desired [b/x]φ). For the fifth case, we have (Rnat (σa) (σa′) n) ∈ [[[n/x]σφ]] by the
inner induction hypothesis. Since n is a number we trivially have n ∈ [[nat]]. By the definition of [[·]] at
Π-type and our hypothesis that σa′ is reducible at the appropriate Π-type, we have that the given term is
in the set [[[(S n)/x]φ]], which is equal to the desired [[[b/x]φ]]Γ.

Case:

Γ ` nil : 〈vec φ 0〉

nil and 0 are values of the right form.

Case:

Γ ` a : φ

Γ ` a′ : 〈vec φ l〉
Γ ` (cons a a′) : 〈vec φ (S l)〉

We prove the second disjunct of σ(cons a a′) ∈ [[σ〈vec φ (S l)〉]]. By IH and R-Canon, we know σa
and σa′ reduce to some values v and v′. Then σ(cons a a′) ;∗

v (cons v v′) as required. Similarly from
the IH we know σ l ;∗

v n, so σ(S l) ;∗
v (S n) as required.

Case:

Γ ` a′′ : 〈vec φ ′ l〉
Γ ` a : [0/y,nil/x]φ
Γ ` a′ : Πz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ

Γ ` (Rvec a a′ a′′) : [l/y,a′′/x]φ

This case is similar to that for Rnat above. By the induction hypothesis, we have

• σa′′ ∈ [[σ〈vec φ ′ l〉]]

• σa ∈ [[σ [0/y,nil/x]φ]]

• σa′ ∈ [[σΠz : φ ′.∀l : nat.Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .[(S l)/y,(cons z v)/x]φ]]

It is sufficient to prove that for any l, for any b ∈ [[〈vec φ ′ l〉]], and assuming the second two of these
facts, we have (Rvec (σa) (σa′) b) ∈ [[[l/y,b/x]σφ]]. The proof is by inner induction on the measure
ν(σa)+ν(σa′)+ν(b)+ l(b). As above, this measure is defined, by R-Canon.

By R-Prog, it suffices to prove that Rvec (σa) (σa′) b steps to a term in [[[l/y,b/x]σφ]]. The terms
(σa), (σa′), and b are all in [[·]], so by R-Canon each of them either steps or is a value. By considering
the cases, one of the following must be the case:

Rvec (σa) (σa′) b ;v Rvec c (σa′) b where (σa) ;v c
Rvec v (σa′) b ;v Rvec v c′ b where (σa′) ;v c′

Rvec v v′ b ;v Rvec v v′ c where b ;v c
Rvec v v′ nil ;v v
Rvec v v′ (cons u u′) ;v v′ u u′ (Rvec v v′ u′)

The first three cases are for when the reduction is due to reduction in a subterm. The second two are
for when the term in question is itself a redex. For the first two cases, we use the inner induction
hypothesis and R-Pres. For the third, we also apply R-Join as in the Rnat case above, to ensure that
we have (Rvec (σa) (σa′) c) ∈ [[[l/y,b/x]σφ]]. The fourth case follows by our assumption that σa ∈
[[[0/y,nil/x]φ]]. By the definition of [[·]] at vec-type, we must have l ;∗

v 0; so we can apply R-Join
and the fact that b = nil to obtain a ∈ [[[l/y,b/x]φ]], as required.

For the fifth case, we know by assumption that (cons u u′) ∈ [[σ〈vec φ l〉]]. By the definition of [[·]]
that means that u ∈ [[φ]], σ l ;∗

v (S n), and u′ ∈ [[〈vec φ n〉]].
Then we have (Rvec (σa) (σa′) u′) ∈ [[[n/y,u′/x]σφ]] by the inner induction hypothesis. By the

definition of [[·]] at Π-type and our hypothesis that σa′ is reducible at the appropriate Π-type, we have
that the given term is in the set [[[(S n)/y,(cons u u′)/x]σφ]]. By using R-Join on l ↓ (S n), this implies
the desired [[[l/y,(cons u u′)/x]φ]].

Case:

Γ ` a : [R a′φ (α.φ ′)/α]φ ′ Γ ` a′ : nat
Γ ` a : R (Sa′) φ (α.φ ′)

By IH we have σa′ ∈ [[nat]], so by R-Canon, σa′ ;∗
v n for some n. Also by IH,

σa ∈ [[[R σa′ σφ (α.σφ
′)/α]σφ

′]]
= [[O[R σa′ σφ (α.σφ

′)/α]φ ′]] lemma 23

= [[O[R n σφ (α.σφ
′)/α]σφ

′]] lemma 21

At the same time,
(R (Sσa′) σφ (α.σφ

′)) 7−→ ([R n σφ (α.σφ
′)/α]σφ

′),

so
O(R (Sσa′) σφ (α.σφ

′)) = O([R n σφ (α.σφ
′)/α]σφ

′).

So

[[R (Sσa′) σφ (α.σφ
′)]] = [[O(R (Sσa′) σφ (α.σφ

′))]]
= [[O([R n σφ (α.σφ

′)/α]σφ
′)]]

Case:

Γ ` a : [R a′φ (α.φ ′)/α]φ ′ Γ ` a′ : nat
Γ ` a : R (Sa′) φ (α.φ ′)

foldS

Similar to the previous case.
Case:

Γ ` a : φ

Γ ` a : R 0 φ (α.φ ′)

Similar to unfoldS case.

Case:

Γ ` a : R 0 φ (α.φ ′)
Γ ` a : φ

Similar to foldS case.

	Introduction
	Unannotated Tvec
	Metatheory of Unannotated Tvec
	Semantics of equality
	The interpretation of types
	Critical properties
	Soundness of typing with respect to the interpretation

	Annotated Tvec
	Example

	Tvec with Large Eliminations
	Semantics of Equality
	Unfolding of R-Types
	Normalization to Canonical Form

	Conclusion and Future Work
	Proof of Type Preservation (Theorem ??)
	Proof of Simplifying Inversion (Lemma ??)
	Proof of Substitution (Lemma ??)

	Proof of Progress (Theorem ??)
	Proof of Canonical Forms (Lemma ??)

	Proof of Critical Properties (Section ??)
	More basic notation
	Preliminary observation
	Critical properties for nat
	Critical properties for "426830A vec l"526930B
	Proof of R-Pres
	Proof of R-Prog
	Proof of R-Join

	Critical properties for x:'.
	Proof of R-Pres
	Proof of R-Prog
	Proof of R-Join

	Critical properties for x:'.
	Proof of R-Pres
	Proof of R-Prog
	Proof of R-Join

	Critical properties for a1 = a2
	Proof of R-Pres
	Proof of R-Prog
	Proof of R-Join

	Proof of Soundness (Theorem ??)
	The Closability Lemma
	The Proof
	Proof of Weakening Substitutions (Lemma ??)

	Proof of Corollaries of Theorem ??
	Proof of Strong Normalization (Corollary ??)
	Proof of Equational Soundness (Theorem ??)

	Proofs for section ?? (Large Eliminations)
	Proof of lemma ?? (Existence and uniqueness of)
	Proof of Lemma ?? (Properties of unfold)
	Proof of Lemma ?? (Characterization of [[]])
	Proof of Critical Properties
	Proof of Theorem ?? (Fundamental Lemma for Large Eliminations version of [[]])

