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Abstract

Knuth-Bendix completions of the equational theories of k ≥ 2 commuting group

endomorphisms are obtained, using automated theorem proving and modern termi-

nation checking. This improves on modern implementations of completion, where

the orderings implemented cannot orient the commutation rules. The result has

applications in decision procedures for automated verification.
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1 Introduction

Decision procedures for first-order theories like fragments of arithmetic or

theories of arrays are the subject of current intensive study for their applica-

tions in automated verification. Modern decision procedures for satisfiability

modulo such theories are built by combining techniques for fast propositional

reasoning with theory specific reasoners. It has been empirically established

that a tight interaction between the theory reasoner and the propositional
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reasoner is critical for high performance [1]. One point of interaction occurs

when the theory reasoner detects that the assignment chosen by the propo-

sitional reasoner is inconsistent modulo the background theory. In this case,

the theory solver should identify as small a subset as possible of the current

assignment which is still inconsistent. Such a subset is used as the basis for a

conflict clause, which is a crucial guide in the subsequent propositional search.

Recent works have explored ways to reduce the size of conflict clauses gener-

ated by theory reasoners for equality with uninterpreted functions [7,8,2]. The

latter two cited works explicitly mine proofs of contradictions to obtain small

conflict clauses. In the cited work by the first author, an algebraic approach

to proof mining is described, where equality proofs are mined by transforming

them according to certain algebraic laws. Under a natural assumption, used

also in the other cited works, of independence of the asserted equations, it

turns out that the algebra of equality proofs, viewed as first-order terms, is

the theory of free groups. Reflexivity, viewed as a 0-ary proof term constructor

proving t = t for any term t, plays the role of the unit element; symmetry,

viewed as taking a proof of x = y as an argument and producing a proof of

y = x, plays the role of the inverse operation; and transitivity, viewed as taking

proofs of x = y and y = z as arguments and producing a proof of x = z, plays

the role of the multiplication. For example, if D1 is an assumption that a = b,

then Trans(D1, Symm(D1)) proves a = a, which is also proved by Refl. We

define proofs to be equivalent (∼=) iff they prove some theorem in common.

Written in conventional syntax for group theory, this is the valid equation

D1 ∗ (D1)
−1 = 1. The cited work takes advantage of the well-known 10-rule

Knuth-Bendix completion of the free group axioms to put equality proofs into

canonical form [5]. This form turns out to be minimal with respect to the set of
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assumptions used. Better, by studying the structure of the canonical forms, it

is possible to devise an algorithm that mines the set of assumptions that would

appear in the canonical form of a proof, without actually rewriting the proof.

This algorithm appears to be more efficient than rewriting the proofs, and

results in a two-fold speedup on large hardware verification benchmarks [8].

Note that, as described in the cited work, by taking proofs to be equivalent

iff they prove a theorem in common, we ensure soundness of the equations

(which are unsound with other notions of proof equivalence).

The work just described does not consider congruence proof rules. Subsequent

unpublished work by the first author has shown that, under a generalization

of the assumption of independence, the algebra of congruence proofs is the

theory of commuting group endomorphisms. We have the following proof rule

Congf,i for each argument position 1 ≤ i ≤ n of each function symbol f of

arity n, where yj ≡ xj for all 1 ≤ j 6= i ≤ n:

xi = yi

f(x1, . . . , xn) = f(y1, . . . , yn)

Congruence proofs satisfy the equations of Figure 1. The first shows that

congruence rules function as endomorphisms, and the second (when i 6= j)

that they commute. This motivates the search for Knuth-Bendix completions

of the theory of k commuting group endomorphisms, CGEk, for every k ≥ 2.

We begin by finding a completion for k = 2 (Section 2), and then show how

to generalize this result to all k > 2 (Section 3).
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Congf,i(Trans(D1, D2)) ∼= Trans(Congf,i(D1),Congf,i(D2))

Trans(Congf,i(D1),Congf,j(D2)) ∼= Trans(Congf,j(D2),Congf,i(D1))

Fig. 1. Equations for Congruence Rules.

(x ∗ y) ∗ z = x ∗ (y ∗ z)

x−1 ∗ x = 1

1 ∗ x = x

f(x ∗ y) = f(x) ∗ f(y)

g(x ∗ y) = g(x) ∗ g(y)

f(x) ∗ g(y) = g(y) ∗ f(x)

Fig. 2. The Theory of Two Commuting Group Endomorphisms

2 The Completed Theory of Two Commuting Endomorphisms

Figure 2 presents CGE2, and Figure 3 gives a completion of this theory. Rules

1 through 10 are the completion, due to Knuth and Bendix, of the group

axioms [5]. Rules 11 through 14 arise from the homomorphism law for f , and

rules 15 through 18 from the homomorphism law for g. Rules 19 and 20 are for

commutation of f and g. Independently written tools by the first and second

author confirm that all 134 critical pairs of this rewrite system are joinable,

and the powerful AProVE termination-checking tool easily certifies that the

system is terminating [4]. So using Newman’s Lemma and the Critical Pair

Lemma, the system is confluent. The Waldmeister theorem prover confirms

that the equational theories of the equations and the rules are the same [6].

Hence, the rules can be used to rewrite any term in the theory to a canonical

form, and hence decide the theory.

Today’s Knuth-Bendix completion tools cannot obtain a convergent comple-
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1. (x ∗ y) ∗ z → x ∗ (y ∗ z)

2. x−1 ∗ x → 1

3. x ∗ x−1 → 1

4. x ∗ (x−1 ∗ y) → y

5. x−1 ∗ (x ∗ y) → y

6. (x ∗ y)−1 → y−1 ∗ x−1

7. 1 ∗ x → x

8. x ∗ 1 → x

9. 1−1 → 1

10. (x−1)−1 → x

11. f(1) → 1

12. (f(x))−1 → f(x−1)

13. f(x) ∗ f(y) → f(x ∗ y)

14. f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

15. g(1) → 1

16. (g(x))−1 → g(x−1)

17. g(x) ∗ g(y) → g(x ∗ y)

18. g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

19. f(x) ∗ g(y) → g(y) ∗ f(x)

20. f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Fig. 3. The Knuth-Bendix Completion of the Theory

tion of CGE2, because, as the reader may confirm, the commutation axiom

cannot be ordered using any Knuth-Bendix ordering (KBO) or recursive path

ordering. These are the only orderings supported by modern completion tools,

to the best of the authors’ knowledge. The system of Figure 3 is obtained

by hand, using custom code to generate critical pairs between a rule from a

set of fixed rules, originally rules 1 through 10 for groups, and a focus rule.

Beginning with focus rules f(1) → 1 and (f(x))−1 → f(x−1), even though

they are consequences of the homomorphism law for f , enables many later

critical pairs to be simplified. Non-joinable critical pairs are oriented by hand.

It appears crucial to orient rules 13 and 17 of Figure 3 as they are, in order
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k # Rk # Ek # CPs time (s)

2 22 2 320 0.01

3 46 24 2676 0.12

4 146 420 229371 34.13

5 670 11240 118887623 81873.09

Fig. 4. For k endomorphisms, the numbers of rules, unoriented equations, critical

pairs processed, and time for Waldmeister to complete CGEk. Experiments were

run on a machine with a 1 Ghz Pentium III processor and 4 GByte RAM.

for completion to terminate. When no non-joinable critical pairs remain, we

use AProVE to check termination of the resulting system.

3 Generalizing to More Than Two Endomorphisms

Using ordered completion, Waldmeister can obtain a system of rules and

unoriented equations with which ground terms can be rewritten using ordered

rewriting to canonical form. To obtain the completion, a KBO with the follow-

ing weights and precedences can be used: −1 7→ 0, ∗ 7→ 1, f 7→ 1, g 7→ 1, 1 7→ 1;

and −1 > ∗ > f > g > 1. This KBO causes rules 13 and 17 of Figure 3 to

be oriented as they are. Unfortunately, as shown in Figure 3, this approach

does not appear to scale as we increase the number of endomorphisms. Note

that the completion for k = 5 is by far the largest successful completion the

second author (an implementor of Waldmeister) has ever performed with

Waldmeister.
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A Knuth-Bendix completion of CGEk with k ≥ 2 consists of the group rules

1 through 10 of Figure 3; a set of four endomorphism rules exactly similar

to rules 11 through 14 (rules 15 through 18 are also exactly similar) for each

endomorphism; and then commutation rules, as follows. Fix a total ordering

� on the endomorphisms. Then for each endomorphism f , add the following

rules Rf,g for every endomorphism g with f � g:

f(x) ∗ g(y) → g(y) ∗ f(x)

f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

We have already reported that all critical pairs between commutation rules

Rf,g, endomorphism rules for f and g, and the group rules are joinable. To

show local confluence, it suffices to show that the critical pairs that arise

between Rf,g and Rg,h are joinable. But since f � g � h, we have f � h,

and so there are commutation rules Rf,h. These are used to join critical pairs

beginning from terms like f(x) ∗ (g(y) ∗ h(z)).

To show termination, we study the proof produced by AProVE for the case

of two endomorphisms. All rules can be removed from the termination problem

using linear polynomial orderings, except for the commutation rules and the

associativity rule. Using the dependency pairs method, the resulting rewrite

system is terminating if for each cycle in the approximated dependency graph,

there is a reduction quasi-ordering which weakly reduces all rules and all

dependency pairs on the cycle, and also strongly reduces one dependency pair

on the cycle [3]. Here, the approximated dependency graph consists of one

strongly connected component (SCC) for the two dependency pairs coming

from the associativity rule, and one SCC for each endomorphism f except the
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�-minimal one. Each SCC is the complete graph on its nodes. The nodes of

the SCC for an endomorphism f are the dependency pairs f(x)∗̂(g(y) ∗ z) →

f(x)∗̂z coming from Rf,g for each g with f � g. A suitable reduction quasi-

ordering is the one arising from the lexicographic path order with precedence

∗̂ > ∗ > f ′

1
> . . . > f ′

k and argument filtering system fi(x) → f ′

i where

f1 � . . . � fk are all the endomorphisms (in order), and f ′

1
, . . . , f ′

k are new

constants. This ordering in fact strongly reduces all rules and all dependency

pairs on all SCCs. So the system with k ≥ 2 is terminating 1 .

Note that in the intended application, if there are n function symbols each

with arity no greater than k, then the number of rules in the rewrite system

is no greater than 10 + 4n + n
∑k−1

i=1
i = 10 + 4n + nk(k − 1)/2.

4 Conclusion

We have seen Knuth-Bendix completion of the equational theory of k ≥ 2 com-

muting group endomorphisms using automated theorem proving and modern

termination checking. The theory has application to proof simplification in

the context of decision procedures for verification. Future work includes min-

ing conflict clauses without actually putting congruence proofs into canonical

form. We hope this work encourages the development of completion tools

based on modern termination-checking techniques.

1 Thanks to Jürgen Giesl for helpful comments on this termination argument.
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