
The SMT-LIB Standard – Version 2.0

Clark Barrett1 Aaron Stump2

Cesare Tinelli2

1New York University, barrett@cs.nyu.edu
2University of Iowa, astump|tinelli@cs.uiowa.edu

Abstract

The SMT-LIB initiative is an international effort, supported by
research groups worldwide, with the two-fold goal of producing an ex-
tensive on-line library of benchmarks and promoting the adoption of
common languages and interfaces for SMT solvers. This paper intro-
duces Version 2 of the SMT-LIB Standard. This is a major upgrade of
the previous Version 1.2 which, in addition to simplifying and extend-
ing the languages of that version, includes a new command language
for interfacing with SMT solvers.

1 Introduction

Satisfiability Modulo Theories (SMT) is a growing area of automated de-
duction with many important applications, especially in static analysis and
system verification [2]. The main problem in SMT is determining whether
a first-order formula is satisfiable in a model that also satisfies one or more
fixed background theories. Typical background theories of interest include
formalizations of arithmetic, arrays, bit-vectors, inductive data types, equal-
ity with uninterpreted functions, and various combinations of these.

SMT-LIB is an international initiative, coordinated currently by the au-
thors and endorsed by a large number of research groups world-wide, aimed
at facilitating research and development in SMT [4]. Since its inception
in 2003, the initiative has pursued these aims by focusing on the following
concrete goals: provide standard rigorous descriptions of background theo-
ries used in SMT systems; develop and promote common input and output
languages for SMT solvers; establish and make available to the research
community a large library of benchmarks for SMT solvers.

The main motivation of the SMT-LIB initiative was the expectation
that the availability of common standards and of a library of benchmarks
would greatly facilitate the evaluation and the comparison of these sys-
tems, and advance the state of the art in the field, in the same way as,

1

for instance, the TPTP library [7] has done for theorem proving, or the
SATLIB library [5] for propositional satisfiability. These expectations have
been largely met, thanks in no small part to extensive benchmark contribu-
tions from the research community and to an annual SMT solver competi-
tion, SMT-COMP [1], based on benchmarks from the library. At the time
of this writing, the library contains more than 85,000 benchmarks and con-
tinues to grow. Formulas in SMT-LIB format are now accepted by the great
majority of current SMT solvers. Moreover, most published experimental
work in SMT relies heavily on SMT-LIB benchmarks.

Experience with the previous version (1.2) of the SMT-LIB standard
helped identify ways in which the standard could be simplified, extended,
and generally improved. In this paper, we give a high-level and selective
overview of the four main components of the new standard: the underlying
logic and expression language; a language for specifying theories; a language
for specifying (sub)logics; and a command-based interface language for SMT
solvers. For complete details on the new standard, we refer the reader to the
SMT-LIB Version 2.0 Reference Manual [3]. For space reasons, this paper
must assume familiarity with SMT, including some acquaintance with the
previous version of the SMT-LIB standard. A more tutorial introduction
to the new standard from the user’s perspective is planned, but outside the
scope of this paper.

1.1 Acknowledgments

The SMT community contributed extensively to the creation of this new
version of the standard. The first drafts of the main components of Ver-
sion 2.0 were developed with the input of three international work groups
consisting of developers and users of SMT tools: the SMT-API work group,
led by A. Stump, the SMT-LOGIC work group, led by C. Tinelli, the SMT-
MODELS work group, led by C. Barrett. These groups worked since Fall
2008 into Spring 2010. The groups went through numerous drafts, and ex-
changed more than 200 emails in the course of discussing them. In early
2010, the various components of the standard were compiled into a single
reference document, which was then circulated among the broader SMT
community for comments.

Particular thanks are due to the following work group members, who con-
tributed numerous suggestions and helpful constructive criticism in person
or in email discussions: Nikolaj Bjørner, Sascha Boehme, David Cok, David
Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh, Alberto Griggio,
Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krstić, Micha l Moskal,
Leonardo de Moura, Philipp Rümmer, Roberto Sebastiani, and Johannes
Waldmann. Many thanks also to Anders Franzén, Amit Goel, and Tjark
Weber for additional feedback, and to David Cok and Philipp Rümmer for
their careful proof-reading of the entire draft reference manual.

2

2 Main Logic and Language

As in Version 1.2, the underlying logic for Version 2.0 is many-sorted first-
order logic with equality. However, the new version borrows several ideas
from higher-order logic. First, there is no longer a distinction between terms
and formulas. The latter are simply terms of a distinguished sort Bool. This
simplifies the concrete syntax, for instance by eliminating the distinction be-
tween function and predicate symbols. Second, Version 2.0 allows sort sym-
bols of arity greater than 0, for forming sort terms like (Array Int Int).
With this feature, parametric types and their theories can be more conve-
niently represented, while keeping the logic first-order.1 Overloaded function
symbols are also allowed (discussed below).

The concrete syntax used in Version 2.0 is very close to the LISP-based
syntax used in Version 1.2, although version 2.0 goes a step further by
making every expression a legal S-expression of Common Lisp [6]. This
means existing parsers and other tools that can already process S-expressions
can be used for SMT.

When defining certain SMT-LIB theories, such as bit-vectors, it is con-
venient to have indexed symbols as identifiers. Instead of having a special
token syntax for that (as in concat[2:3]), indexed identifiers are defined
more systematically as the application of the reserved symbol _ to a symbol
and one or more indices, given by numerals (as in (_ concat 2 3)).

Several syntactic categories in the language contain attributes. These
are pairs consisting of an attribute name and an associated value, or just
attributes with no value. Attribute names are preceded by the character :.
Attribute values are S-expressions, although most predefined attributes use
a more restricted category.

Well-sorted terms are a subset of the set of all terms. The latter are con-
structed out of constant symbols (numerals, rationals, strings, etc.), vari-
ables, function symbols, a distinguished symbol for equality and one for
disequality (respectively = and distinct), three kinds of binders, and an
annotation operator (!), explained below.

A variable can be any symbol,2 while a function symbol can be either
a symbol or an indexed symbol. Every function symbol f is separately
associated with one or more ranks, each specifying the sort of f ’s arguments
and result; multi-arity symbols are supported with associativity declarations
(see Figure 1 for examples). To simplify sort checking, every ambiguous

1In particular, contrary to higher-order typed logics, there is no distinguished binary
sort symbol for creating function types. (We use type and sort as synonyms in the context
of the standard.)

2A symbol is either a non-empty sequence of letters, digits and the characters
˜!@$%ˆ&∗ -+=<>.?/ that does not start with a digit, or a sequence of any printable
ASCII characters that starts and ends with | and does not otherwise contain |. This
significantly extends the class of acceptable symbols from version 1.2 of the standard.

3

function symbol in a term must be annotated with one of its result sorts σ.
Such an annotated function symbol is a qualified identifier of the form (as

f σ).
Binders include let, forall and exists. The forall and exists

binders correspond to the usual existential and universal quantifiers of first-
order logic, except that the variables they quantify are sorted. A let binder
introduces and defines one or more local variables in parallel. A simple
example of a formula is the following array axiom:

(forall ((a (Array Int Real)) (i Int) (e Real))

(let ((a1 (store a i e))

(= (select a1 i) e)))

Every term t can be optionally annotated with attributes α1, . . . , αn

using the wrapper expression (! t α1 · · · αn). These are a convenient
mechanism for adding meta-logical information for SMT solvers, for exam-
ple to help guide quantifier instantiation. Semantically, (! t α1 · · · αn) is
equivalent to t. Currently there is only one predefined term attribute, called
:named that takes a single symbol as its value. This attribute can be used in
scripts to give a closed term a symbolic name, which can be then used as a
proxy for the term (as in (! (- (+ a b) c) :named a_1)). These defini-
tions are global, in contrast with lexically scoped local definitions introduced
by let.

3 Specifying Theories

The set of SMT-LIB theories is defined by a catalog of theory declarations.3

While these have a formal syntax and thus could be processed by tools, the
primary intention is to provide concise declarative specifications of theories,
for reference by solver implementors and users. Theories like ArraysEx, for
arrays with extensionality, and Fixed Size BitVectors, for bitvectors of
arbitrary but fixed size, have been ported from 1.2.

In Version 1.2, a theory declaration defined a many-sorted signature, i.e.,
a collection of sorts and sorted function symbols, and a theory with that
signature. In this version instead, theory declarations can declare entire
families of overloaded function symbols by using sort parameters, locally
scoped sort symbols of arity 0. A theory declaration generally defines a class
of similar theories. The syntax of theory declarations follows an attribute-
based format. A theory declaration consists of a theory name and a list of
attributes. Theory attributes with the following predefined names have a
prescribed usage and semantics: :definition, :funs, :funs-description,
:notes, :sorts, :sorts-description, and :values.

3Available on the SMT-LIB web site.

4

(theory Core

:sorts ((Bool 0))

:funs ((true Bool) (false Bool) (not Bool Bool)

(=> Bool Bool Bool :right-assoc) (and Bool Bool Bool :left-assoc)

(or Bool Bool Bool :left-assoc) (xor Bool Bool Bool :left-assoc)

(par (A) (= A A Bool)) (par (A) (ite Bool A A))

)

:definition

"For every expanded signature Sigma, the instance of Core with that signature

is the theory consisting of all Sigma-models in which:

- the sort Bool denotes the set {true, false} of Boolean values;

- for all sorts s in Sigma, (= s s Bool) denotes the function that

returns true iff its two arguments are identical;

- for all sorts s in Sigma, (ite Bool s s) denotes the function that

returns its second argument or its third depending on whether

its first argument is true or not;

- the other function symbols of Core denote the standard Boolean operators

as expected.

"

:values "The Bool values are the terms true and false."

)

(theory ArraysEx

:sorts ((Array 2))

:funs ((par (X Y) (select (Array X Y) X Y))

(par (X Y) (store (Array X Y) X Y (Array X Y)))

)

:notes

"A schematic version of the theory of functional arrays with extensionality."

:definition

"For every expanded signature Sigma, the instance of ArraysEx with that

signature is the theory consisting of all Sigma-models that satisfy all

axioms of the form below, for all sorts s1, s2 in Sigma:

- (forall ((a (Array s1 s2)) (i s1) (e s2))

(= (select (store a i e) i) e))

- (forall ((a (Array s1 s2)) (i s1) (j s1) (e s2))

(implies (distinct i j) (= (select (store a i e) j) (select a j))))

- (forall ((a (Array s1 s2)) (b (Array s1 s2)))

(implies

(forall ((i s1)) (= (select a i) (select b i))) (= a b)))

"

)

Figure 1: Examples of theory declaration schemas.

5

Theory attributes can be formal or informal depending on whether or
not their value has a formal semantics. The value of an informal attribute
is free text, in the form of a string value. For instance, the :funs and
:sorts attributes (specifying the function and sort symbols of the theory
respectively) are formal in the sense above, while :funs-description and
:sorts-description are informal alternatives for theories that would oth-
erwise require an infinite number of formal declarations.

The :definition attribute is meant to contain a natural language def-
inition of the theory. While this definition is expected to be as rigorous
as possible, it does not have to be a formal one. The :values attribute is
used to identify for each sort σ in a certain class of sorts, a particular set
of ground terms of sort σ that are to be considered as values for σ. Intu-
itively, given an instance theory containing a sort σ, a set of values for σ is
a set of terms (of sort σ) that denotes, in each model of the theory, all the
elements of that sort. The :notes attribute is meant to contain documen-
tation information on the theory declaration such as authors, date, version,
references, etc., although this information can also be provided with more
specific, user-defined attributes.

A theory declaration (theory T α1 · · · αn) specifies a theory schema
with name T and attributes α1, . . . , αn. Each instance of the schema is a the-
ory TΣ with an expanded signature Σ, containing (zero or more) additional
sort and function symbols with respect to those in the declaration. Figure 1
contains two examples of theory declaration. The first, Core, specifies a
special basic theory which defines the sort Bool and the Boolean connec-
tives, and is implicitly included in every SMT-LIB theory. Note the use of
par to declare a family of equality and of if-then-else operators. The second
declaration, ArrayEx, specifies a parametric theory of extensional arrays.

The simplest way to obtain an instance of a theory schema is to provide
a possibly empty set Q of sort symbols (this set is specified in a separate
sublogic declaration described in the next section). The instance theory
then contains the set S of all (parameter-free) sort terms over Q∪R, where
R is the set of sort symbols declared in the schema itself. Note that S is
non-empty because R always contains the 0-arity sort symbol Bool. For
example, instantiating the theory schema ArrayEx above with Q = {Int},
we get a theory ArrayQ with a set S of sorts defined inductively as follows:
(i) Bool, Int ∈ S; (ii) for all σ1, σ2 ∈ S, (Array σ1 σ2) ∈ S.4 That the-
ory contains infinitely-many select symbols, each with rank of the form
((Array σ1 σ2) σ1 σ2) for some σ1, σ2 ∈ S (similarly for store).

Schematic theory declarations are a meta-level approximation of true
parametric types and polymorphic functions. Their main advantage versus
extending the logic with type variables and true parametric types is that

4Note that logic declarations, described in the next section, can be used to restrict this
set of sorts; for example, to exclude a sort like Array Bool Bool, if desired.

6

(logic QF_IntIntArrays

:theories (ArraysEx Ints)

:language

"Quantifier-free formulas possibly with free constant symbols but

with terms exclusively of sort Bool, Int, or (Array Int Int).

All terms of sort Int are linear."

)

Figure 2: Example logic declaration.

the semantics of the logic and, as a consequence, its associated inference
apparatus, remains essentially the same as in Version 1.2. Syntactically, the
only difference is that sorts are now named by ground terms such as (Array
Int Real) instead of constants such as IntRealArray. Another advantage
is that we can get, with one instantiation of the schema, a single theory with
arbitrarily nested sorts. This is crucial in providing a simple mechanism for
theory combination (see [3] for more details). The main limitation is that
users cannot define (new) polymorphic function symbols in a benchmark
because sort parameters can occur only in theory declarations. While this is
a true limitation, it can be overcome by defining finitely many monomorphic
versions of the polymorphic symbol, as needed.

4 Logic Declarations

The SMT-LIB format allows the explicit definition of sublogics of its main
logic that restrict both the main logic’s syntax and semantics. A new
sublogic, or simply logic, is defined in the SMT-LIB language by a logic
declaration. Logic declarations have a similar format to theory declarations,
although they are not parametric and they have mostly informal attributes.

Attributes with the following predefined keywords have a prescribed us-
age and semantics in logic declarations: :theories, :language, :notes,
:extensions, and :values.

When the value of the :theories attribute is (T1 · · · Tn), with n > 0,
the logic refers to a combination T of specific instances T1, . . . ,Tn of the
theory declarations T1, . . . , Tn.5 The effect of this attribute is to declare
that the logic’s sort and function symbols consist of those of the combined
theory T , and that the logic’s semantics is restricted to the models of T .

The :language attribute describes in free text the logic’s language, a
specific class of SMT-LIB formulas. This information is useful for tailoring
SMT solvers to the specific sublanguage of formulas used in an input script.
The formulas in the logic’s language are built over (a subset of) the signature
of the associated theory T , as specified in this attribute.

5The combination operator that formally yields T from T1, . . . , Tn is described in detail
in the Version 2.0 reference document [3].

7

〈command〉 ::= (set-logic 〈symbol〉)

| (set-option 〈option〉) | (set-info 〈attribute〉)
| (declare-sort 〈symbol〉 〈numeral〉)
| (define-sort 〈symbol〉 (〈symbol〉∗) 〈sort〉)
| (declare-fun 〈symbol〉 (〈sort〉∗) 〈sort〉)
| (define-fun 〈symbol〉 (〈sorted var〉∗) 〈sort〉 〈term〉)

| (push 〈numeral〉) | (pop 〈numeral〉)
| (assert 〈term〉) | (check-sat)

| (get-assertions) | (get-proof)

| (get-unsat-core) | (get-assignment)

| (get-option 〈keyword〉) | (get-info 〈info flag〉)
| (get-value (〈term〉+)) | (exit)

〈script〉 ::= 〈command〉∗

Figure 3: Syntax of commands

The optional :extensions attribute is meant to document any nota-
tional conventions, or syntactic sugar, allowed in the concrete syntax of
formulas in this logic. The :values attribute has the same use as in theory
declarations but it refers to the specific theories and sorts of the logic. It is
meant to complement the :values attribute specified in the theory declara-
tions referred to in the :theories attribute. The textual :notes attribute
serves the same purpose as in theory declarations. An small example of a
logic declaration is shown in Figure 2.

5 Scripts

Most SMT solvers, in addition to reading the SMT-LIB input format, pro-
vide an API for using the solver as a library or interactively. A major new
feature of Version 2.0 is a standard command language for such APIs. The
command language consists of a set of standard S-expression commands that
can be issued by users, together with a set of standard reponses that can
come from the solver. The syntax is given in Figure 3. Commands include
(i) assertion-set commands: declare-sort and define-sort, declare-fun
and define-fun, assert, check-sat, push, pop, get-assertions; (ii) post-
check commands: get-value, get-assignment, get-proof, get-unsat-core;
and (iii) option and diagnostic commands: set-logic, set-option, set-info,
get-option, get-info. Benchmarks in Version 2.0 are just scripts in this
command language.

The assertion-set commands operate on a data structure called the asser-
tion-set stack. This is a single global stack, consisting of assertion sets, which
are sets of assertions, definitions, and declarations. The union of all the as-
sertion sets is called the set of all assertions. The command get-assertions

returns all the assertions (but not the definitions and declarations) in this

8

set. The check-sat command checks the satisfiability of the set of all as-
sertions. The command push n pushes n empty assertion sets onto the top
of the assertion-set stack, and pop n pops the top n assertion sets off the
stack (or gives an error if the size of the stack is less than n).6 The current
assertion set is the assertion set (if any) currently on the top of the stack.

The define/declare commands add a definition or declaration, respec-
tively, to the current assertion set. They allow a user to declare or define new
sort and function symbols, and can also be used to create aliases for larger
sorts and terms. This provides a global mechanism for expression sharing
that was missing in Version 1.2. The assert command adds a formula to
the current assertion set.

The post-check commands can be used immediately following a call to
check-sat to obtain more information from the solver. Calls to check-sat

return one of unsat, sat, or unknown. If unsat is returned, the optional
commands get-unsat-core and get-proof are enabled. The first returns
an unsatisfiable subset of the set of assertions checked—there is no mini-
mality requirement, but the expectation is that solvers will attempt to ap-
proximate it. The second returns a proof that the formula is unsatisfiable in
some solver-specific format (there is not yet a standard format for proofs).
If a check returns sat or unknown,7 then the other commands are enabled.

Many applications using SMT solvers need concrete values for terms oc-
curring in the problem, for example to produce a trace showing a violation of
a property during program verification. The optional get-value command
requires the solver to produce internally a model for the set of checked as-
sertions and return values from the model’s domain for one or more ground
terms given as arguments. The values returned by the solver should be from
the set described in a :values attribute of either the current logic being
used or one of the theories referenced by that logic. Finally, option and
diagnostic commands are also available.

Figure 4 shows a sample interaction using the command language. A
short example of a Version 1.2 SMT-LIB benchmark converted into a Version
2.0 script in provided in the appendix.

6 Conclusion and Further Work

Version 2.0 of the SMT-LIB standard was developed with the input of many
SMT researchers to sustain and expand the role of the standard in facili-
tating research and development in SMT. The new version increases the ex-

6The n here is for convenience; a more minimalistic formulation would omit n, and
simply push or pop a single assertion-set.

7An unknown response is typically given when a solver has computed a satisfying assign-
ment but does not know whether this assignment is consistent due to some incompleteness
in its method. The standard encourages solver implementers to make the same information
available after an unknown response as after a sat response.

9

> (set-logic QF_LIA) > (check-sat)

success unsat

> (declare-fun x () Int) > (pop 1)

success > (check-sat)

> (declare-fun y () Int) sat

success > (get-value ((> x y) x y))

> (assert (or (> x y) (> y x)) (((> x y) true)

success (x 1)

> (set-option :print-success false) (y 0)

> (push 1))

> (assert (= x y)) > (exit)

Figure 4: Sample interaction using command language. The meta-symbol >
indicates inputs.

pressiveness of SMT-LIB theory declarations to include parametric theories
and theory combinations. It provides a simplified syntax, and a new com-
mand language for more dynamic and sophisticated interaction—whether
by a human or another tool—with SMT solvers. We believe that with the
continued support of the SMT community, this standard will help the field
of SMT reach the next level of utility and power for its growing range of ap-
plications. A number of useful features and commands that were discussed
by the work groups did not make it in this version because they needed fur-
ther discussion or greater consensus. We plan to continue working on them
with the aim of introducing them in Version 2.1.

References

[1] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results of
the 3rd annual satisfiability modulo theories competition (SMT-COMP
2007). International Journal on Artificial Intelligence Tools (IJAIT),
17(4):569–606, Aug. 2008.

[2] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh,
editors, Handbook of Satisfiability, volume 185, chapter 26, pages 825–
885. IOS Press, February 2009.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version
2.0 Reference Manual, Jan. 2010. (Available at www.SMT-LIB.org).

[4] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[5] H. H. Hoos and T. Stützle. SATLIB: An Online Resource for Research
on SAT. In SAT2000: Highlights of Satisfiability Research in the year
2000, pages 283–292. Kluwer Academic, 2000.

10

[6] G. L. Steele. Common Lisp the Language. Digital Press, 1990.

[7] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

11

A Sample Benchmark in New and Old Format

(set-logic QF_LIA)

(set-info :source | Mathsat benchmarks available from http://mathsat.itc.it |)

(set-info :smt-lib-version 2.0)

(set-info :category "industrial")

(set-info :status sat)

(declare-fun arg1 () Int)

(declare-fun ARG2_LSBRCK_0_RSBRCK_ () Bool)

...

(assert

(let ((?v_0 (not ARG2_LSBRCK_0_RSBRCK_)) (?v_1 (not ARG2_LSBRCK_1_RSBRCK_)))

(and (and

(= (- (- arg2 arg2_LSBRCK_0_RSBRCK_) (* 2 arg2_LSBRCK_1_RSBRCK_)) 0))

(>= arg2_LSBRCK_0_RSBRCK_ 0))

...))

(check-sat)

(exit)

Figure 5: Part of CIRC/MULTIPLIER PRIME 2.msat.smt2, Version 2.0.

(benchmark MULTIPLIER_PRIME_2.msat.smt

:source { Mathsat benchmarks available from http://mathsat.itc.it }

:status sat

:category { industrial }

:difficulty { 0 }

:logic QF_LIA

:extrafuns ((arg1 Int))

:extrapreds ((ARG2_LSBRCK_0_RSBRCK_))

...

:formula

(flet ($cvcl_0 (not ARG2_LSBRCK_0_RSBRCK_))

(flet ($cvcl_1 (not ARG2_LSBRCK_1_RSBRCK_))

(and (and

(= (- (- arg2 arg2_LSBRCK_0_RSBRCK_) (* 2 arg2_LSBRCK_1_RSBRCK_)) 0))

(>= arg2_LSBRCK_0_RSBRCK_ 0))

...))

)

Figure 6: Part of CIRC/MULTIPLIER PRIME 2.msat.smt, Version 1.2.

12

