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Abstract

In this paper a language-based approach to functionally correct imperative programming is proposed.
The approach is based on a programming language called RSP1, which combines dependent types, general
recursion, and imperative features in a type-safe way, while preserving decidability of type checking. The
methodology used is that of internal verification, where programs manipulate programmer-supplied proofs
explicitly as data. The fundamental technical idea of RSP1 is to identify problematic operations as impure,
and keep them out of dependent types. The resulting language is powerful enough to verify statically
non-trivial properties of imperative and functional programs. The paper presents the ideas through the
examples of statically verified merge sort, statically verified imperative binary search trees, and statically
verified directed acyclic graphs.

This paper is an extended version of [30].

1 Introduction

Impressive progress in verification and analysis of imperative programs continues to be made in sev-
eral research communities. In static analysis, techniques like shape analysis have been used to verify
properties of the reference graph (e.g., [18, 27, 14]). Theorem proving techniques in higher-order log-
ics have also been applied (e.g., [17]). Rapid development continues based on separation logic [26], a
substructural logic that has proved convenient for stating properties of the reference graph.

In the present work, we develop an alternative, language-based approach to functionally correct
imperative programming, based on the idea of internal verification [1, 2]. In internal verification, proofs
are data in a dependently typed programming language. Functions are written to require proofs of their
preconditions as additional arguments, and return proofs of their postconditions. Type checking ensures
that proofs are manipulated soundly, guaranteeing partial correctness: If the program terminates and
encounters no run-time errors, then the specified properties will hold. Dependent types are used for
two reasons. First, the judgments-as-types principle allows specifications to be represented as types,
with their proofs represented as objects of those types. Second, dependency allows a type checker to
connect proofs and the data the proofs prove something about.

Dependent types are supported by a number of languages [22, 3, 16, 9, 7, 15, 6]. Including support
for general recursion and imperative features while retaining desirable meta-theoretic properties like
decidability of type checking is technically challenging. Twelf is the only system the authors know where
this has been achieved, but the solution there depends heavily on the fact that logic programming is
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taken as the programming paradigm (more on this in Section 7). The technical challenges arise due
to the fact that if arbitrary objects can index types, then unrestricted recursion in types can cause
type checking to be undecidable (as some objects that index types might not terminate); and reads of
mutable state in types are unsound, since the mutable state, and thus the types, can change over time.

The goal of this paper is to present a type-safe language, RSP1, that allows programming with
proofs in the presence of unrestricted recursion and imperative features, while retaining decidable type
checking. The key insight enabling this is purity: only objects which are considered pure are allowed
to index types. Unrestricted recursion and imperative reads and writes are considered impure, and are
banned from types. This concept could potentially be extended to other features that do not mix well
with dependent types. The paper presents several examples of (imperative) programming with proofs
in RSP1 (Section 3), including binary search trees where the binary search tree property is statically
verified, and directed graphs which are statically verified to be acyclic. A pure functional example is
also included, statically verified merge sort.

Technically, RSP1 is first-order (thus the “1” in its name): it does not allow functions or function
application in its types. Lambda-abstractions are replaced by a more powerful pattern-matching facility,
which is considered impure. This prevents the direct use of of Higher-Order Abstract Syntax [21] in
the language, as it cannot appear in types. Despite the lack of this feature, many useful properties of
algorithms and imperative data structures can be verified in the first-order setting of RSP1. Omitting
lambdas from types also has the advantage that there is no need to consider β- or η-equivalence in type-
checking. This greatly simplifies the proof of the decidability of type-checking, which is notoriously
hard to prove in systems with β- and η-equivalence [12, 10]. This also makes it straightforward to
compile RSP1 to machine code to OCaml, for which compilers to native code exist.

The rest of this document is organized as follows. Section 2 gives an overview of the language RSP1.
Section 3 discusses how programming with proofs interacts with the purity and first-order restrictions,
and presents the examples. Section 4 briefly describes our approach to compiling RSP1. Section 5
gives an in-depth account of the static semantics of the language. Section 6 describes the operational
semantics of the language. Section 7 discussed related work. Finally, Section 8 concludes and gives
directions for future work. The proofs of lemmas given in the text are differed to the Appendix.

2 Language Overview

In this Section, we give an overview of RSP1 through its syntax. The first half of the section describes
the constructs of the language and how they are used. We then go on to define some other important
syntactic concepts of the language, such as purity, representational objects, what counts as first-order
types, and patterns as they are allowed in pattern-matching.

The syntax of RSP1 is given in Figure 1. Each category of term is given an abbreviation, such
as M for terms or T for types. Throughout this document, we will refer to the various categories of
terms in the Figure by the letter(s) or symbol(s) given with them, possibly with numeric subscripts
or primes, as in M1 or M ′. Other, non-numeric subscripts will be used for special restrictions of these
categories, like the pure or representational objects, which are given below. We will also use x, y, and
z for variables, c for object-level constants, a for type-level constants, l for record labels, and d for
“definition variables” (discussed below), again with possible subscripts or primes on any of these. Note
that, since some of the constructs given are cannot be written in ASCII text (e.g. Πr), there are a few
instances where RSP1 code differs from this figure. These will be discussed where appropriate.

The central concepts in Figure 1 are the objects, the types, the kinds, the signatures, and the
contexts, as in LF [11]. The objects level terms are the programs of RSP1. The well-formed programs
of RSP1 have types, and the well-formed types have kinds. Signatures are used to type user-defined
type- and term-constructors, while contexts are used to type variables. Starting at the top of this
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Objects M ::= x ‖ c ‖ M1M2 ‖ M :: T ‖ let rec D in M ‖

R ‖ M.l ‖ ρ ‖ null ‖ M.c ‖ M1.c := M2

Types T ::= a ‖ T M ‖ Π{r,c,a}x : T1.T2 ‖ RT

Kinds K ::= type ‖ Πrx : T.K

Pattern Abstractions ρ ::= ε ‖ x\M1\Γ → M2 | ρ

Records R ::= [] ‖ [l = M,x.R] ‖ [l = M,R]

Variable Definitions D ::= d1 : T1 = M1, . . . , dn : Tn = Mn

Record Types RT ::= {} ‖ {l : T, x.RT}

Signatures Σ ::= · ‖ Σ, a : K ‖ Σ, c : T

Contexts Γ ::= · ‖ Γ, x : T

Figure 1: RSP1 Syntax

hierarchy are the standard kinds of LF: type, which classifies all the types that may be had by objects,
such as record types and some user-defined types; and Πrx : T.K, the kind of types indexed by objects
of type T . (In LF, kind-level abstractions are normally written Πx : T.K, but we add the r superscript,
which stands for “representational,” to distinguish from two other sorts of abstraction in RSP1.) The
construct Πrx : T.K appears in RSP1 code as x:T => K.

At the type level are: type constants, a; type applications, T M1 . . .Mn, indicating a type of family
T indexed by objects M1 through Mn; representational abstraction types, Πrx : T1.T2, for typing
functions in the LF fragment (which, as RSP1 has no lambdas, are an application of a constant to
less than its required number of arguments); computational abstraction types, Πcx : T1.T2, for typing
pattern abstractions, the computational element of the language; attribute abstraction types, Πa, for
typing attributes (see below); and dependent record types, {l1 : T1, x1.{. . . {ln : Tn, xn.{}} . . .}} (the
right-associating dependent record types of [25]), in which the types of later fields may be indexed
by the names of earlier ones. The abstraction types, Πrx : T1.T2, Πcx : T1.T2, and Πax : T1.T2, are
written x:T1 => T2, x:T1 =c> T2, and x:T1 =a> T2, respectively. Note that the type constants, type
applications, and representational abstractions are exactly the type constructs of LF.

The objects, being the programs of RSP1, have more constructs. The first three constructs of
the objects given in Figure 1, variables, constants, and application, are standard, though in RSP1,
application is written the same for the LF fragment and for applying pattern abstractions. The next
two constructs, type ascription (written M :: T ) and let rec, are also standard (see e.g. [23]). Type
ascription allows the user to ascribe a type to a term, and is useful because the type inferencing
algorithm for RSP1 is not complete. The let rec construct, similar to that found in ML, allows general
recursion. It is slightly nonstandard in that it requires the special d variables, which are just like normal
variables, except they are impure. This is because they represent recursive terms, so evaluation of them
may not terminate.

Records in RSP1 are of two sorts: dependent records and independent, dependently typed records.
The latter are the right-associating records of [25], and are written [l1 = M1, [. . . [ln = Mn, []] . . .]] in
RSP1, where the li are the record labels and the Mi are the fields of the record. Dependent records allow
later fields of a record to refer to previous fields. These are written [l1 = M1, x1.[. . . [ln = Mn, xn.[]] . . .]],
where the xi variables can be used in later fields to refer to earlier ones. These two styles can be freely
intermixed. To increase readability, the user can omit the variables and all but the outermost brackets,
which is syntactic sugar for dependent records with variables named the same as their fields. For
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example, the code

[l1 = c, l2 = f (d l1)]

makes a dependent record wherein the second l1 (in the l2 field) refers back to the value of the first
field. Record selection, written M.l, is then used to extract elements of records.

The pattern abstractions, ρ, are the central computational element of the language. These are
written x1\M1\Γ1 → M ′

1| . . . |xn\Mn\Γn → M ′
n|ε. When applied to an argument, a pattern abstraction

matches each Mi (the patterns) against the argument, starting from the first, until one matches, i.e.
until it finds some substitution for the variables in Γi (the pattern variables) to make the pattern equal
to the term. If, say, pattern Mi matches the argument, then the whole argument is substituted for xi into
M ′

i (the body), while the subterms of the argument that matched the pattern variables are substituted
for them into body as well. The resulting term is then evaluated. For instance, the identity function on
type T could be written x \ y \ y:T -> x or x \ y \ y:T -> y as anything matches the single
pattern variable y. Note that we elide the empty pattern, ε, in code. As a second example, if we create
the type nat of natural numbers, with constructors zero and succ (so e.g. 3 would be represented by
succ succ succ zero), then the pattern function

x \ zero \ -> zero | x \ succ y \ y:nat -> y

would be the standard predecessor function (taking the predecessor of 0 to be 0).
If no pattern in a pattern abstraction matches, then it returns the special term null. null is consid-

ered a run-time error in RSP1, and behaves like an exception: records that contain null as a field, as
well as applications that contain null as either the function or the argument, evaluate to null themselves
(except that pattern abstractions can match a null argument by having null as a pattern). Thus no
value, other than pattern abstractions, will have null as a proper subterm. This means that run-time
errors “trickle up” to the top of a term, and can immediately be detected by checking against null.

Finally, the attribute operations, M.c and M.c := M ′, constitute the imperative feature of RSP1.
An attribute is a user-defined constant of type Πax : T1.T2. These act like hashtables: if c is an
attribute, then M.c looks up the value associated with M in c’s hashtable and M.c := M ′ updates this
value to be M ′. Attributes are slightly different than references, the standard imperative feature, but
experience with RSP1 has shown attributes to be a useful mechanism for capturing dependencies: the
fact that attributes have product types (as suggested by the Π) means that the type of M.c can be
indexed by M .

In addition to these constructs, we shall find two pieces of syntactic sugar very useful. The first,
let x = M1 in M2, does local variable binding. It is syntactic sugar for (x \ y \ y:T -> M2) M1,
where T is the type of M1, and y is a fresh variable. The second, if M1 then M2 else M3, tests M1
against null. It is syntactic sugar for (x \ null \ -> M3 | x \ y \ y:T -> M2) M1, where T is the
type of M1 and x and y are new variables.

We shall also define some other important concepts in RSP1 in terms of syntax. These definitions
are given in Figure 2. The representational objects and types are the LF fragment of the objects and
types, respectively. Note the zero-order restriction on the argument type of Πr-abstractions. The pure
objects include the representational objects plus records and record selects. These will be the only
objects allowed to index types. The patterns, made of records and representational objects or a single
null, are the only patterns allowed in pattern abstractions. Thus a pattern abstraction cannot match
on the form of another pattern abstraction. Finally, the zero-order types, which omit the abstraction
types, will be the only argument types allowed for computational and attribute abstractions types.

The concept of purity, as mentioned above, is important in ensuring type soundness and decidability.
The only computation allowed in types is record selects from pure records, as these will always terminate
and their value is not dependent on the store. We ban attribute operations and let rec from the pure
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Representational Object Mrep ::= x ‖ c ‖ Mrep Mrep

Pure Object Mpure ::= Mrep ‖ Mpure.l ‖ [l = Mpure, x.Mpure] ‖ [l = Mpure,Mpure] ‖ []

Pure Pattern Mppat ::= Mrep ‖ [l = Mppat,Mppat] ‖ []

Pattern Mpat ::= Mppat ‖ null

Zero-Order Rep. Type TZRep ::= a ‖ TZRep Mrep

Zero-Order Type TZ ::= TZRep ‖ {l : TZ , x.TZ} ‖ {}

Representational Type Trep ::= TZRep ‖ Πrx : TZRep.Trep

Figure 2: Other Syntactic Concepts of RSP1

objects, since, as discussed above, these cannot be allowed to index types. We ban null, since it is not
data that we wish to prove properties about. We also ban pattern abstractions, both so we do not
have to consider problems like β- and η-equivalence, and because it is unclear how to apply pattern
abstractions to the variables that can appear in types. Purity will be important in the programming
methodology in Section 3, since the programmer must take care not to apply dependently typed
functions to impure objects. It will also be important in formalizing the metatheory of the language,
as there will have to be two different substitution lemmas, one for pure and one for impure objects.

3 Programming with Proofs

In this section, we discuss programming with proofs in RSP1. We begin by discussing a methodology
for programming with proofs in RSP1, which both solves the technical problems posed by the concept
of purity and offers some conveniences not necessarily found in other methodologies. This will be
illustrated by a simple list example. Then, in the subsections, we give examples of more complicated
examples which illustrate the kinds of properties of data structures we can prove in RSP1. The purpose
of this section will be to see both how purity affects programming with proofs, and how useful properties
of data structures and code can be represented in a first-order language like RSP1.

Consider the example of lists of some arbitrary data (here given the type data) where it is important
to prove properties about the sizes of the lists. These can be represented with the following type and
term constructors:

• nat :: type. Natural numbers in unary, with the usual constructors zero and succ.

• list :: n:nat => type. Lists of nats of length n. The term constructors are:

nil :: list zero;;
cons :: n:nat => data => list n => list (succ n);;

• plus :: nat => nat => nat => type. The type (plus x y z) is intended to be inhabited iff
x + y = z. Its term constructors, embodying the usual recursive definition of addition, are:

plus_zero :: x:nat => plus zero x x;;
plus_succ :: x:nat => y:nat => z:nat => plus y x z => plus (succ y) x (succ z);;

Next, consider the operation of appending two lists. We wish to write an append function that
returns, along with the concatenation of two lists, a proof that the length of this result is the sum
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rec append :: l2:{n:nat, l:list n} =c> l1:{n:nat, l:list n} =c>
{n:nat, l:list n, deriv:plus l2.n l1.n n} =

l2 \ dummy_var \ dummy_var:{n:nat, l:list n} ->
( l1 \ [n=zero, l = nil] \ ->

[n=l2.n, l=l2.l, deriv=plus_zero l2.n]
| l1 \ [n=succ tail1_len, l = cons n1 data1 list1_tail]

\ tail1_len:nat,data1:data,list1_tail ->
let res = append l2 [n=tail1_len, l = list1_tail] in
[n=succ res.n, l = cons res.n data1 res.l,
deriv = plus_succ l2.n tail1_len res.n res.deriv]);;

Figure 3: Append for lists with length

of the lengths of the two inputs. The code for this append is given in Figure 3. append is defined to
be a recursive function. (The rec keyword means append is a top-level, recursive definition, and is
equivalent to let rec append:T = M in M, where T is replaced by the type declared for append and
M is replaced by the outer pattern abstraction in the Figure.) append takes in two records, l1 and
l2, each of which contain a list and its length, in the l and n fields, respectively. The length must
come first, as the type of the list is indexed by it. Also, note that it is more convenient in this case
to take the second list first, as we wish the inner case to discriminate against whether the first list
is empty or not. append returns a record with a list, its length, and a proof that this length is the
sum of the lengths of l1 and l2. Its type illustrates the first point of our methodology, that terms
should generally be bundled in a record with the terms that index their types. Bundling terms with
the indices of their types makes it easy for the user to see, in the type of the function, the dependencies
between the arguments and their types, as well as the specification of the function. This could be done
without dependently typed records, but it would require declaring a new type family and constructor
for each input and output bundle, which quickly becomes tedious, and separates the specification of
the function over multiple locations.

The body of the function works like a normal append function: if the second argument is the
empty list (matched by the first l1 clause, which matches n against zero and l against nil), the
function simply returns the second list; otherwise, it recursively calls append on the tail of the list (the
appearance of append on the third-to-last line), and prepends the first element of l1 to the resulting
list (the cons on the second-to-last line). The main difference is that we also construct the deriv
field in the returned record, which is the proof that the length of the returned list is the sum of the
lengths of the input lists. Since the recursive call to append is recursive, it is not pure. The length of
the result, res.n, needs to index two types, the type of the cons expression and the type of the plus
expression. The reason this example still type checks is because of the let. Inside the body of the let,
the res variable is pure, as it is a normal variable. Thus it is ok that the types of some expressions are
indexed by it. The type of the whole body, however, is not indexed by res, as the individual types of
the fields of the returned record are “swallowed up” by the dependent record type. Thus, the type of
the whole let expression need not be indexed by the impure recursive call. This is the other key to
our methodology, using let to locally shadow the values of impure terms and then bundling them in
dependently typed records to hide the impurity from the return type.

A final consideration is null. null can inhabit any type, so is a vacuous proof of any property.
Since null “trickles up” in any term, however, there cannot be proofs that are erroneous because they
contain null as a proper subterm. Also, since our methodology involves the bundling of data with its
proofs in records, if any of the proofs a function returns contain null, the whole record will evaluate to
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null, and the function will not return any data. Instead, this is interpreted as a run-time error. So our
desired property of functional correctness can be made precise: if a function that programs with proofs,
according to our methodology, returns a non-null value, then the proofs it returns are guaranteed to
be well-formed. Note that this motivates the use of null in our methodology. If a program wishes to
prove some properties of data which could potentially fail to hold, for instance if it is input incorrectly,
the program can simply return null in cases where it ascertains that the property fails.

In the following subsections, we consider the following three examples of programming with proofs
in RSP1. The first is a version of mergesort which returns, in addition to the sorted output list, a
proof that that list is sorted and has exactly the same elements as the input list. The third example is
an implementation of imperative binary search trees where we statically verify that the binary search
tree property is maintained. This example does not verify the structural property that the reference
graph starting from any node is really a tree (we verify the binary search tree property even without
this structural property). In the fourth example, we give an example of statically verifying a structural
property of the reference graph, namely that of being acyclic. Other examples in progress but not
discussed here include a proof-producing automated reasoning tool, where propositional proofs are
encoded as a term-indexed datatype [13]; and mesh-manipulating algorithms from computer graphics,
where a mesh is encoded as a datatype indexed by its Euler characteristic [5].

3.1 Merge Sort

The implementation of proof-producing merge sort in RSP1 is based on the following term-indexed
datatypes:

• nat :: type. Natural numbers in unary, as for the append example.

• list :: type. Lists of nats. We elect here not to index the type of lists by a length, for simplicity.
The term constructors are nil and cons, of the usual types.

• lte :: nat => nat => type. Natural number less-than. This type has these term constructors:

lte_start :: x:nat => lte x x;;
lte_next :: x:nat => y:nat => lte x y => lte x (succ y);;

• sorted :: list => type. The property on lists of being sorted. We rely on the following three
term constructors for this type. The third one, for example, can be read as saying that for all nats
n and m, and for all lists l; if n is less than m and (cons m l) is sorted, then so is (cons n (cons
m l)).

sorted_nil :: sorted nil;;
sorted_cons1 :: n:nat => sorted (cons n nil);;
sorted_cons2 :: n:nat => m:nat => l:list =>

lte n m =>
sorted (cons m l) =>
sorted (cons n (cons m l));;

• occurs :: nat => list => list => type;; The intended meaning of (occurs n l1 l2) is that
n occurs in l1, and l2 is the result of removing one occurrence of x from l1. We omit the (simple)
term constructors here.
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• multiset union :: list => list => list => type;; The intended meaning of multiset union
l l1 l2 is that the multiset of elements in l is equal to the multiset union of the multiset of elements
in l1 with the multiset of elements in l2. The term constructors for this type are:

mu_nil :: multiset_union nil nil nil;;
mu_cons1 :: n:nat => l:list => l1:list => l1p:list => l2:list =>

occurs n l1 l1p =>
multiset_union l l1p l2 =>
multiset_union (cons n l) l1 l2;;

mu_cons2 :: n:nat => l:list => l1:list => l2:list => l2p:list =>
occurs n l2 l2p =>
multiset_union l l1 l2p =>
multiset_union (cons n l) l1 l2;;

With these types, we can state the types of the three critical recursive functions needed for mergesort:

split :: l:list =c> {a:list, b:list, MU:multiset_union l a b};;
merge :: q:{l1:list, D1:sorted l1, l2:list, D2:sorted l2} =c>

{l:list, D:sorted l, MU:multiset_union l q.l1 q.l2};;
mergesort :: l1:list =c> {l:list, D:sorted l, MU:multiset_union l1 l nil};;

The split function is responsible for splitting an input list l into two output lists a and b of roughly
equal size (note that this latter property is not specified here and hence not statically checked). It
additionally produces a proof that l is the multiset union of a and b. The merge function takes in lists
l1 and l2, together with proofs that those lists are sorted, and produces the merged output list l,
together with a proof that l is sorted and the multiset union of l1 and l2. Finally, mergesort takes
in a list l1, and returns an output list l, together with a proof that l is sorted and the multiset union
of l1 and nil. This last condition is, of course, sufficient to guarantee that l and l1 have exactly the
same elements.

Space reasons prohibit giving all the code (87 lines) for this example, but we consider a representa-
tive piece from merge, shown in Figure 4. This is the case where the two input lists are both non-empty
(as shown in the pattern which makes up the first line of the Figure; note that the types of the pattern
variables are omitted for space reasons). The body of this case begins by calling a helper function
nat comp to compare the heads n and m of the two lists. If n is smaller, nat comp returns a term of
type (lte n m). Otherwise, it returns null. Depending on which of these two cases occurs, one or the
other recursive call to merge is made (in either the then-part or the else-part of the if-then-else). The
two recursive calls to merge both rely on a helper lemma sublist sorted, which takes in a non-empty
sorted list and returns a proof that its immediate sublist is sorted. Both branches of the if-then-else
then build a record with fields l for the merged list, D for the proof that l is sorted, and MU for the
proof that l is the multiset union of the input lists. Lemmas extend sorted1 and extend sorted2
are also used. The lemma extend sorted1 takes in the proofs that the input lists are sorted, as well
as the proof that the result of the recursive call is sorted and is the multiset union of the second list
and the immediate sublist of the first list. The lemma returns a proof that consing n onto the list
obtained from the recursive call is sorted. We note here that the implementation of mergesort relies on
250 lines of proofs of lemmas like extend sorted1. A few lemmas concerning multiset union remain
to be proved. These are currently just expressed as additional axioms (via declarations of additional
term constructors).
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| q \ [l1 = cons n l1, D1 = D1, l2 = cons m l2, D2 = D2] \ D1,l1,m,n,l2,D2 ->
let C = nat_comp n m in

if C then
let R = merge [l1 = l1, D1 = sublist_sorted [n = n, l = l1, D = D1],

l2 = q.l2, D2 = D2] in
[l = cons n R.l,
D = extend_sorted1 n m l2 D2 C

[l1 = l1, D1 = D1, l = R.l, D = R.D, MU = R.MU],
MU = mu_cons1 n R.l (cons n l1) l1 q.l2 (occurs_start n l1) R.MU]

else
let R = merge [l1 = q.l1, D1 = D1,

l2 = l2, D2 = sublist_sorted [n = m, l = l2, D = D2]] in
[l = cons m R.l,
D = extend_sorted2 n l1 m D1 (nat_comp m n)

[l2 = l2, D2 = D2, l = R.l, D = R.D, MU = R.MU],
MU = mu_cons2 m R.l q.l1 (cons m l2) l2 (occurs_start m l2) R.MU]

Figure 4: Recursive case of merge

3.2 Imperative Binary Search Trees

We consider implementing imperative binary search trees in such a way that the binary search tree
property is ensured statically by RSP1’s type checking. The binary search trees are imperative in the
sense that the left and right subtrees of a particular tree are reached by following mutable pointers
from the node at the top of the tree. Trees can, of course, be implemented as an inductive datatype in
a language with user-declared datatypes (like RSP1 or ML). But imperative trees have the advantage
that subtrees can be modified in place, without requiring the entire tree to be rebuilt (as would be the
case with a datatype of trees). For simplicity, the data in our binary search tree will just be natural
numbers in unary (as defined above).

The binary search tree property we would like to verify statically is that every piece of data stored
in the left subtree of a tree whose top node stores data d must be less than or equal to d; and every
piece of data stored in the right subtree must be greater than or equal to d. Note that allowing data
equal to d to appear in either subtree makes the development simpler. Note also that we will not
actually try to enforce the structural property of being a tree, as opposed to a proper graph (although
see Section 8). To express our binary search tree property as an RSP1 type, we cannot rely on being
able to speak directly about the reference graph, as is often done in static analysis (e.g., [18, 27, 14]).
RSP1’s types may not contain attribute reads or any other impure expressions, and hence cannot refer
directly to the reference graph. The approach we follow instead is to express local invariants which
imply the binary search tree property. The local invariants are statically enforced. The fact that they
imply the binary search tree property is not (in any obvious way) expressible in RSP1. Hence, we
cannot prove in RSP1 that the local invariants indeed imply the global property, and must argue that
outside the system.

The basic plan is to build our binary search tree out of nodes, connected by bst left and bst right
attributes. We associate (in a way explained shortly) two numbers l and u with each node n. These
are intended to be a lower bound and upper bound, respectively, on all the data stored in the subtree
rooted at n. Then we enforce the following local invariants on the pointers from node n to another
node n’, storing data d’ and having associated lower and upper bounds l’ and u’:
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• If n’ is the left child of n, then l ≤ l’ and u’ ≤ d. That is, the left subtree’s lower bound must be
the same or tighter than the current tree’s lower bound, and the left subtree’s upper bound must
be less than or equal to the data at the top of the current tree.

• If n’ is the right child of n, then u’ ≤ u and d ≤ l’. That is, the right subtree’s upper bound must
be the same or tighter, and the right subtree’s lower bound must be greater than or equal to the
data at the top of the current tree.

We take the following term-indexed datatype for the type of binary search tree nodes:

node :: l:nat => d:nat => u:nat => type;;

The type (node l d u) is the type for nodes with associated lower bound l and upper bound u, and
data d stored in the node. We include d as an index to the type so we can refer to it when we express
the local invariants. To construct nodes, we use the following term constructor, which requires proofs
that l ≤ d ≤ u, as well as a unique id (to ensure the graph is not cyclic, although as mentioned, we
do not statically check that property):

mknode :: l:nat => d:nat => u:nat => id:nat =>
lte l d => lte d u => node l d u;;

Now we may express the local invariants with the following attribute declarations:

bst_left :: parent:{l:nat, d:nat, u:nat, n:node l d u}
=a> {l:nat, d:nat, u:nat, n:node l d u,

p1:lte parent.l l, p2:lte u parent.d};;

bst_right :: parent:{l:nat, d:nat, u:nat, n:node l d u}
=a> {l:nat, d:nat, u:nat, n:node l d u,

p1:lte u parent.u, p2:lte parent.d l};;

These declarations state that bst left and bst right are attributes of dependent records containing
the indices l,d, and u, as well as the node itself. We cannot make them attributes just of nodes, due
to the presence of the indices. The declarations state that proofs of the local invariants discussed
above are included as members of the records stored in the attributes. This means that whenever an
attribute is written, the proofs of the local invariants must be supplied. And similarly, those proofs
are available whenever an attribute is read. By the soundness of our encoding of judgments of natural
number less-than as the term-indexed datatype lte, the existence of these proofs for every edge in the
reference graph shows that the local invariants always hold.

To show that the local invariants imply the binary search tree property (which we must do outside
RSP1), it suffices to show that the putative lower and upper bounds on the data reachable from
each node really hold. The argument cannot proceed by induction on the structure of trees, since, as
mentioned above, we are not enforcing the structural property of being a tree. Nothing prevents the
pointers from being incorrectly set to create cycles or reconvergent paths. Nevertheless, the binary
search tree property still holds. We prove that for every length k, for every node n, and for every
node n’ reachable by a simple path of length k from n, the data stored at n’ is within the bounds
associated with n. The proof is by induction on k. The data stored at n itself is within the bounds,
since mknode requires proofs of those containments. For the inductive case, suppose n’ is reachable
from n with a simple path of length k + 1. This must be by following either bst left or bst right to
reach a node n’’. The node n’ is thus reachable from n’’ using a simple path of length k. Then by the
induction hypothesis, we know the data stored at n’ is within the bounds associated with n’’. But by
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the enforcement of the local invariants and transitivity of ≤, this implies that the data is within the
bounds associated with n.

Based on our data structure, we can implement insertion into a binary search tree:

rec bst_insert :: x:nat =c> q:{l:nat, d:nat, u:nat, n:node l d u}
=c> bst_insert_ret_t q.l q.d q.u x = ...

The return type of bst insert uses a new term-indexed datatype, introduced to return information
about how the insertion proceeded. The information is needed to construct suitable proofs when re-
cursive calls to bst insert return. The term constructors for bst insert ret t correspond to three
possible scenarios that could occur when doing the insertion:

1. l ≤ x ≤ u, and the input node to the recursive call remains the root of the updated tree.

2. x ≤ l, and the input node is no longer the root of the updated tree (since the lower bound must
now be x). The node which has everything the same as the input node except that the lower bound
is x is the new root.

3. u ≤ x, and the input node is again no longer the root of the updated tree (since the upper bound
must now be x). The node which has everything the same as the input node except that the upper
bound is x is the new root.

When bst insert makes a recursive call, it uses the information returned as follows. If the input node
is no longer the root of the updated tree, the bst left or bst right (as appropriate) attribute of
the node currently being processed must be reset to point to the node which is the new root. Then
the current call to bst insert must itself return the appropriate instance of bst insert ret t. This
instance is readily determined. For example, if the recursive call was made in order to insert x into the
right subtree of the current node, and if that recursive call returned an instance corresponding to case
1 or case 2 above, then the current call returns an instance corresponding to case 1: in either case, the
data x is still within the current node’s bounds.

Note that we are not checking, and cannot in any obvious way check, that bst insert actually
inserts the data into the tree. This might be considered something like a liveness property: the reference
graph is actually modified in a certain way. But we are enforcing what might be considered a safety
property: the reference graph is guaranteed always to have a certain property, however it may be
modified.

3.3 Statically Enforcing a Structural Property

The preceding example showed how to enforce statically a non-structural property of the reference
graph in RSP1. Here, we give a simple example where a structural property is statically enforced.
The property is that a reference graph determined by two attributes, dag left and dag right, is
acyclic. As in the preceding Section, we must devise local invariants that imply this global property
of the reference graph. We rely on the simple fact that a finite directed graph is acyclic (a dag) if its
edge relation is contained in some well-founded ordering. For the implementation in RSP1, we take
natural number less-than as our well-founded ordering. More complex (computable) orderings could be
supported in a similar way. We will associate with each of our dag nodes a natural number. The well-
founded ordering on dag nodes is then the ordering of those nodes by the associated natural number.
In RSP1, as for the example in the preceding Section, we index the type of dag nodes by the associated
natural number. We will enforce statically the local invariant that all dag nodes reachable in one or
more steps from a given dag node have a smaller associated number. Hence, each dag node’s number
will be a strict upper bound on the numbers associated with dag nodes reachable in one or more steps.
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type nat = Null_nat | Zero | Succ of nat
type list = Null_list | Nil | Cons of nat * list
type lte = Null_lte | Lte_start of nat | Lte_next of nat * nat * lte
type sorted = Null_sorted | Sorted_nil | Sorted_cons1 of nat

| Sorted_cons2 of nat * nat * list * lte * sorted
type mu = Null_mu | Mu_nil

| Mu_cons1 of nat * list * list * list * list * occurs * mu
| Mu_cons2 of nat * list * list * list * list * occurs * mu

let record =
let _num = Succ Zero in
let _data = Cons _num Nil in
let _order = Lte_start _num in

[ num = _num; data = _data; order = _order] in
record.data;;

Figure 5: Intermediate compiled representation of types and records in OCaml

For concreteness, we implement dags where each dag node stores a natural number (unrelated to the
bound associated with the dag node). The term-indexed datatype we need, with its term constructor,
is:

dag :: b:nat => type;;
mkdag :: b:nat => data:nat => dag b;;

We then specify our local invariant in these attribute declarations, which use a term-indexed datatype
lt for strict natural-number less-than (we omit its simple declarations):

dag_left :: parent:{b:nat, d:dag b} =a> {b:nat, d:dag b, p:lt b parent.b};;
dag_right :: parent:{b:nat, d:dag b} =a> {b:nat, d:dag b, p:lt b parent.b};;

Using these definitions, it is straightforward to implement conversion from (functional) trees to
dags with maximal sharing. We declare an inductive datatype of trees in the usual way, and then
implement:

rec dagify :: x:tree =c> {b:nat, d:dag b} = ...

As in the preceding Section, we do not here statically check the liveness property that the dag returned
is suitably related to the input tree. But we do enforce the safety property that the reference graph
starting from any node created by this method is contained within the natural number less-than relation
(and hence really a dag, although that implication must again be verified outside the system).

4 Compilation

We translate well-typed RSP1 programs into Objective Caml (OCaml) and leverage the OCaml com-
piler to generate native executables. OCaml was chosen as an intermediate language primarily because
many of its syntactic and operational aspects closely mirror those of RSP1. Furthermore, OCaml’s
strong type system allows the intermediate representation to use much of the original type information
to ensure correctness of the translation and the compiler itself.
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OCaml’s type system does not support dependent types. So, RSP1 types are compiled into OCaml
types in which the indexing terms are elided (see Fig. 5). Most features in RSP1 translate with little
adjustment to their natural analogues in OCaml. Computational functions are represented by the
OCaml function construct. The let and let rec constructs are identical. RSP1 patterns are similar
to those in OCaml, but, unlike in RSP1, all variables in OCaml patterns are treated as pattern variables.
The translation from RSP1 patterns must therefore include a pattern guard (a when clause) to constrain
the values of pattern variables with corresponding local variables already in the context. Terms are
created by data constructor application in a manner that is essentially identical in both languages.

Other RSP constructs are more flexible than their OCaml counterparts or simply do not map
directly to any high-level OCaml feature. For example, RSP attribute declarations are compiled into a
pair of functions that manage reads and writes to a hash table for the attribute. Records in RSP allow
intra-record prior field lookups, unlike in OCaml. In the intermediate representation, field contents are
compiled into a series of let-defined OCaml expressions culminating in an OCaml record that gathers
the definitions and allows for later access in the typical fashion (see Fig. 5).

The constant null may adopt any type in an RSP program, but since the OCaml type system
disallows polymorphic constants, a special Null constructor is added to the signature for each data
type. More complex types are “η-expanded” into null objects at compile-time — null records become
records of the appropriate type with null fields and null functions become functions that return a
null object of the appropriate type regardless of the arguments it is applied to. Testing for null in an
if-then-else RSP1 expression is translated into a test for the appropriate null object in OCaml. 1

5 Static Semantics

To formalize the static semantics of RSP1, we must first define the valid signatures and contexts. Rules
for these judgments are given in Figure 6. Note that any constant in a valid signature must either have
representational type or be an attribute. This is the only place we shall mention these judgments
explicitly: all typing rules in the sequel implicitly require that all signatures and contexts involved are
valid. We also assume that all variables in a context are always distinct; it will always be possible to
assure this with alpha-conversion.

` · sig
` Σ sig Σ; · ` K : kind

` Σ, a : K sig

` Σ sig Σ; · ` Trep : type
` Σ, c : Trep sig

` Σ sig Σ; · ` Πax : T1.T2 : type
` Σ, c : Πax : T1.T2 sig

` Σ sig

Σ ` · ctxt
Σ ` Γ ctxt Σ; Γ ` T : type

Σ ` Γ, x : T ctxt

Figure 6: Valid RSP1 Signatures and Contexts

The rules for typing types and kinds are given in Figure 7. As mentioned above, only Π-abstractions
with zero-order argument types are allowed. Also, Πr-abstractions require representational types for
argument and result types, to keep them inside the representational fragment. Finally, note that, as
promised above, only types indexed by pure objects will be considered well-formed.

1Compiled RSP does not yet support the correct behavior of propagating nulls.
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Σ; Γ ` type : kind
t-type-kind

Σ; Γ ` TZRep : type Σ; Γ, x : TZRep ` K : kind
Σ; Γ ` Πrx : TZRep.K : kind

t-pi-kind

a : K ∈ Σ
Σ; Γ ` a : K

t-const-type
Σ; Γ ` {} : type

t-empty-rec-type

Σ; Γ ` TZRep : type Σ; Γ, x : TZRep ` Trep : type
Σ; Γ ` Πrx : TZRep.Trep : type

t-r-pi-type

Σ; Γ ` TZ : type Σ; Γ, x : TZ ` T : type
Σ; Γ ` Πc,ax : TZ .T : type

t-{c,a}-pi-type

Σ; Γ ` T : Πrx : TZRep.K Σ; Γ ` Mpure : TZRep

Σ; Γ ` TMpure : [Mpure/x]K
t-type-app

Σ; Γ ` T : type Σ; Γ, x : T ` RT : type
Σ; Γ ` {l : T, x.RT} : type

t-rec-type

Figure 7: RSP1 Type- and Kind-Level Typing

In order to define object-level typing, we need two more judgments. The first is type equivalence,
written ` T1 = T2. The rules for type equivalence are given in Figure 8. Most of these correspond
directly to structural equivalence of the two types. Note that record types are considered equivalent up
to α-conversion on the variables they bind. The interesting case is for type application, which requires
the argument objects to be equivalent. This is a separate judgment, written ` M1 = M2, and has only
one rule, eq-obj. This rule requires the two objects to evaluate to the same object: ⇒ is the single-step
evaluation relation, given in Section 6, and ⇒∗ is the reflexive-transitive closure of this relation. This
evaluation is also in the empty store, as object equivalence should not depend on values in the store.
For more on the evaluation relation, see Section 6. Note that only pure objects can be considered
equivalent, which will be sufficient for our purposes, as only pure objects can enter into types.

` ·;Mpure−1 ⇒∗ ·;M ·;Mpure−2 ⇒∗ ·;M
` Mpure−1 = Mpure−2

eq-obj

` a = a
eq-const

` {} = {}
eq-empty-rec

` T1 = T2 ` M1 = M2

` T1M1 = T2M2
eq-app

` T11 = T21 ` T12 = T22

` Π{r,c,a}T11.T12 = Π{r,c,a}T21.T22

eq-{r,c,a}-pi

` T1 = T2 ` RT1 = RT2

` {l : T1, x.RT1} = {l : T2, x.RT2}
eq-rec-type

Figure 8: RSP1 Equivalence
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The use of evaluation to the same normal form as the basis for object equivalence is justified, because
this coincides with the customary, more declaratively defined equivalence relation. We could define
object equivalence as the set of equational consequences of the equational versions of the rules e-rec-sel1
and e-rec-sel2 (Figure 14). But if we orient those equations as in the Figure, the resulting rewrite
system is terminating and clearly locally confluent. Hence, it is convergent by Newman’s Lemma,
and equivalent to the equational theory by Birkhoff’s Theorem [4]. Then any strategy for applying
the oriented equations, including the call-by-value strategy of our evaluation relation, is sound and
complete for the equational theory. Note that our notion of equivalence does not depend on typing.
This is one instance where the first-order nature of RSP1 greatly simplifies the type theory. In standard
LF with β- and η-equivalence, confluence does not hold for ill-typed terms. Thus proving confluence
requires notions of typing, and is much more complicated.

The second judgment we require is record type selection, the rules for which are given in Figure 9.
This judgment, written ` RTSell M RT T , is meant to indicate that selecting label l from object M
with type RT will result in an object of type T . If l is the first label in RT , then the required type is
the first type in RT , as suggested by the rule rtsel-base. If, however, l is not the first label in RT , then,
since RT is a dependent record type, the first element of M must be substituted for the first variable
in RT into the second and later field types in RT . Since we require only pure objects to appear in
types, then either M should be pure, or it should not be substituted into the record type. Thus we get
the pure and impure rules in the Figure. To ensure coherence of the two rules, we use the question of
whether the variable x is free in RT to distinguish which rule is applicable.

` RTSell M {l : T, x.RT} T
rtsel-base

` RTSell1 Mpure ([Mpure/x]RT ) T1 x ∈ FV (RT ) l1 6= l2

` RTSell1 Mpure {l2 : T2, x.RT} T1
rtsel-pure

` RTSell1 M RT T1 x 6∈ FV (RT ) l1 6= l2

` RTSell1 M {l2 : T2, x.RT} T1
rtsel-impure

Figure 9: RSP1 Record Type Selection

The object-level typing rules for RSP1 are given in Figure 10. These include standard rules for
constants, variables, ascriptions, and conversions, and a rule typing null at any type. Pattern abstrac-
tions are only well-typed when all patterns follow the syntactic restrictions of Figure 2. Note that
the requirement that ε only be typed by valid Πc-types ensures inductively that the Πc-type of any
pattern abstraction is a valid type in just the context Γ. In particular, this ensures that none of the
variables in Γ′, for any part of a pattern abstraction, appear in the resulting type of the abstraction.
Following these are pure and impure rules for applications and attribute reads, similar to the pure and
impure rules for RTSel discussed above. The Figure gives rules for dependent and independent records,
the latter being equivalent to that given in [25] and the former being a straightforward adaptation to
dependent records. Record selects are typed using RTSel, which, as discussed above, substitutes record
selects of earlier labels of M into the types of later labels. Finally, the Figure gives straightforward
rules for attribute writes, empty records, and let rec.

Many standard structural properties of dependent type systems hold for RSP1, such as weakening
and validity. Substitution, however, is nonstandard, because impure objects cannot enter into types.
In RSP1, we in fact have two Substitution Lemmas, for pure and impure objects:

Lemma 5.1 (Pure Substitution)
If Σ; Γ ` M : T , x 6∈ FV (Γ), M is pure, and Σ; Γ, x : T ` M ′ : T ′, then Σ; Γ ` [M/x]M ′ : [M/x]T ′.
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x : T ∈ Γ
Σ; Γ ` x : T

t-var
c : T ∈ Σ

Σ; Γ ` c : T
t-const

Σ; Γ ` T : type
Σ; Γ ` null : T

t-null
Σ; Γ ` M : T

Σ; Γ ` (M :: T ) : T
t-asc

Σ; Γ ` M : T Σ; Γ ` T ′ : type ` T = T ′

Σ; Γ ` M : T ′ t-conv

Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

Σ; Γ ` Πcx : Tz.T : type
Σ; Γ ` ε : Πcx : Tz.T

t-epsilon

Σ; Γ ` M : Πr,cx : T1.T2 Σ; Γ ` Mpure : T1 x ∈ FV (T2)
Σ; Γ ` M Mpure : [Mpure/x]T2

t-{r,c}-pure-app

Σ; Γ ` M1 : Πr,cx : T1.T2 Σ; Γ ` M2 : T1 x 6∈ FV (T2)
Σ; Γ ` M1 M2 : T2

t-{r,c}-impure-app

Σ; Γ ` c : Πax : TZ .T Σ; Γ ` Mpure : TZ x ∈ FV (T2)
Σ; Γ ` Mpure.c : [Mpure/x]T

t-attr-read-pure

Σ; Γ ` c : Πax : TZ .T Σ; Γ ` M : TZ x 6∈ FV (T )
Σ; Γ ` M.c : T

t-attr-read-impure

Σ; Γ ` M1.c : T Σ; Γ ` M2 : T

Σ; Γ ` M1.c := M2 : T
t-attr-write

Σ; Γ ` [] : {}
t-empty-rec

Σ; Γ ` M : RT ` RTSell M RT T

Σ; Γ ` M.l : T
t-rec-select

Σ; Γ ` M : T Σ; Γ ` [M/x]R : [M/y]RT Σ; Γ, y : T ` RT : type
Σ; Γ ` [l = M,x.R] : {l : T, y.RT} t-record

Σ; Γ ` M : T Σ; Γ ` R : [M/y]RT Σ; Γ, y : T ` RT : type
Σ; Γ ` [l = M,R] : {l : T, y.RT} t-indep-record

Σ; Γ, d1 : T1, . . . , dn : Tn ` M : T Σ; Γ, d1 : T1, . . . , dn : Tn ` Mi : Ti

Σ; Γ ` let rec d1 : T1 = M1, . . . , dn : Tn = Mn in M : T
t-let-rec

Figure 10: RSP1 Object-Level Typing
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Lemma 5.2 (Impure Substitution)
If Σ; Γ ` M : T , x 6∈ FV (Γ), D is a derivation of Σ; Γ, x : T ` M ′ : T ′, and x is not free in any type
in D, then Σ; Γ ` [M/x]M ′ : T ′.

The pure form of substitution is similar to the pure typing rules, in that M can only be substituted
into a type if it is pure. The impure form requires a much stronger condition: not only can x not
occur in T ′ if M is impure, but it cannot occur free in any type in the deduction D. This is because
the argument type of an abstraction typing could contain x, even though T ′ does not, since these
argument types “disappear” below the line of their respective elimination rules (i.e. the typing rules
for applications and attribute reads).

Type and object equivalence are also decidable, the first following from the second, and the second
following from the fact that the evaluation relation is deterministic, so easily Church-Rosser, and
terminating on the pure objects.

Lemma 5.3 (Decidability of Equivalence)
For any T1, T2 and M1, M2, it is decidable whether ` T1 = T2 and whether ` M1 = M2.

Given the decidability of equivalence, it is straightforward to implement a sound, but not complete,
type inferencing procedure, using local type inference [24]. The problem with completeness lies in the
t-record and t-indep-record rules of Figure 10: the substitutions below the line make it impossible to
know, from just structural information, what instances of M in R should be replaced by x in RT . The
basic idea of the local type inference algorithm we use is that when typing applications, the type of the
functional term is synthesized, and its domain type is used to guide type checking of the argument.
This means that in the common case where records are passed as arguments to recursively defined
functions, we check that the supplied record can indeed have the domain type of the function.

Our procedure, which incorporates a few further ideas, works well in practice, and the code that
has been written in RSP1 so far rarely needs to make use of ascriptions. Further details of the local
type inference algorithm are beyond the scope of this paper. Note that the algorithm currently does
not compute omitted types for bound variables; those must still be supplied by the programmer. We
conjecture that a complete type inference algorithm for RSP1 should be achievable, since the number
of distinct types a dependent record can have in RSP1 is finite. Indeed, this observation shows that
the non-determinism of the present typing rules is bounded, and hence type checking is decidable. In
more general settings, there can be infinitely many incomparable types (an example is given in [28]).

6 Operational Semantics

To define the operation semantics of RSP1, we first define the values and the stores, given in Figure
11. The values, as in all languages, represent the possible final results of a computation. In RSP1,
these include records, pattern abstractions, representational objects, and null, though note that, as
mentioned above, null cannot be a proper subterm of a value. The stores are necessary because of the
attributes. They associate attribute expressions with their values. Whenever an attribute is read, it is
retrieved from the current store, and whenever it is written, the current store is updated.

Stores also need to be well-typed. The rules for typing stores are given in Figure 12. The interesting
rule, opt-store-add, simply ensures that the referenced value, V2, has the same type as the corresponding
attribute read expression, V1.c, has. Note that we do not need a pure and an impure version of this
rule, because values are always pure.

The operational semantics of RSP1 are given in Figures 13 and 14 in terms of a small-step semantics.
The small-step evaluation judgment, µ;M ⇒ µ′;M ′, describes the evaluation of an object M in the
context of µ, the current store, which, as discussed above, gives the current values of the attributes.
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Record V alues RV ::= [] ‖ [l = Vpure, RV ]

Representational V alues Vrep ::= c ‖ Vrep Vrep

Pure V alues Vpure ::= Vrep ‖ RV

V alues V ::= Vpure ‖ ρ ‖ null

Stores µ ::= · ‖ µ, V1.c 7→ V2

Figure 11: RSP1 Operational Syntax

Σ ` ·
opt-store-empty

Σ ` µ c : Πax :Tz.T ∈ Σ Σ; · ` V1 : Tz Σ; · ` V2 : [V1/x]T
Σ ` µ, V1.c 7→ V2

opt-store-add

Figure 12: RSP1 Operational Typing

The rules in Figure 13 describe the congruences, and are thus straightforward. An interesting case
is e-rec-congr3, which evaluates dependent records to independent records. Also note that these rules
define a deterministic evaluation order.

The rules in Figure 14 describe the action of each of the object-level constructs of RSP1. Most of
these are as expected: record selects retrieve the value for the particular label, ascriptions are removed,
attribute reads retrieve the necessary value from the store, attribute writes update the store, and let rec
operates as usual. null is returned whenever no other value is appropriate, including when null or ε are
applied to a value, when a record select acts on null, or when an attribute is read that does not have
a corresponding value.

Applying a non-empty pattern abstraction requires testing whether the argument matches the
outer pattern. This is the meaning of the match function; match(V1,Γ, V2) is the substitution for
the variables in Γ that, when applied to V1, obtains V2. If such a match exists for a pattern and an
argument, [V2/x, σ] is applied to the body, where σ is the given substitution. Otherwise, if no such
substitution exists, written match(V1,Γ, V2) ↑, then the outer pattern is stripped from the pattern
abstraction, so that the next pattern can be tried. Note that, as a special case, only the pattern null
can match null, i.e. a pattern variable cannot match null. This is because null is impure, but the output
type of a pattern abstraction might depend on its argument, and substituting null in as the argument
would put it into a type. If we think of null as an exception, this means the pattern null is really a
catch statement.

Our pure and impure rules, along with our first-order syntactic restrictions, ensure that our static
semantics is sound with respect to our operational semantics. This is proved via the standard Preser-
vation and Progress Lemmas, proofs of which are deferred to the Appendix.

Lemma 6.1 (Preservation)
If Σ ` µ, Σ; Γ ` M : T , and µ;M ⇒ µ′;M ′, then Σ ` µ′ and Σ; Γ ` M ′ : T .

Lemma 6.2 (Progress)
If Σ ` µ and Σ; · ` M : T , then either M is a value, or µ;M ⇒ µ′;M ′, for some µ′ and M ′.

Theorem 6.1 (Type Safety)
If Σ; Γ ` M : T , Σ; Γ ` µ, and µ;M ⇒∗ µ′;M ′, then M ′ is either a value or can evaluate another step.
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µ;M1 ⇒ µ′;M ′
1

µ;M1M2 ⇒ µ′;M ′
1M2

e-app-congr1
µ;M2 ⇒ µ′;M ′

2

µ;V1M2 ⇒ µ′;V1M
′
2

e-app-congr2

µ;M ⇒ µ′;M ′

µ;M.l ⇒ µ′;M ′.l
e-rec-sel-congr

µ;M ⇒ µ′;M ′

µ;M.c ⇒ µ′;M ′.c
e-attr-read-congr

µ;M1 ⇒ µ′;M ′
1

µ;M1.c := M2 ⇒ µ′;M ′
1.c := M2

e-attr-write-congr1

µ;M ⇒ µ′;M ′

µ;V.c := M ⇒ µ′;V.c := M
e-attr-write-congr2

µ;M ⇒ µ′;M ′

µ; [l = M,x.R] ⇒ µ′; [l = M ′, x.R]
e-rec-congr1

µ;M ⇒ µ′;M ′

µ; [l = M,R] ⇒ µ′; [l = M ′, R]
e-rec-congr2

µ; [l = V, x.R] ⇒ µ; [l = V, [V/x]R]
e-rec-congr3

µ;R ⇒ µ′;R′

µ; [l = V,R] ⇒ µ′; [l = V,R′]
e-rec-congr4

µ; [l = null, RV ] ⇒ µ; null e-rec-null1

µ; [l = Vpure,null] ⇒ µ; null e-rec-null2

Figure 13: RSP Operational Semantics Part 1 (Congruence)

7 Related Work

There has been much research in dependently typed languages and in verifying programs with them.
For discussion of the latter, see, for example, [1, 2]. As for the former, many of these (for instance,
[16, 9, 15, 8, 19]) are strongly normalizing. This is an important property in showing them correct.
None of these languages support any sort of effects or mutable state, which is not surprising, as many of
them are intended more as proof assistants than as programming languages. The Cayenne language [3],
on the other hand, is not strongly normalizing. Unfortunately, this percolates up to its types, causing
type-checking and type equivalence to be undecidable. Cayenne is also the only other language the
authors know of that has a construct similar to null, namely ⊥, which inhabits all types.

A different approach to dependent types is Dependent ML [31]. Dependent ML restricts the terms
allowed to index types to constraint domains: the paper uses arithmetic over the integers as an example.
The type system of Dependent ML can then express constraints over these domains, such as one integer
being greater than another, and can solve for properties of these constraints, which end up proving
properties of the code. This is different from the goals of RSP1, which involve letting the user prove
arbitrary properties of the data she manipulates.

Yet another approach we consider here is Twelf [22], a logic programming language built on LF.
Twelf supports unrestricted recursion, but has a decidable type-checking problem. This is possible
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µ; ε V ⇒ µ; null
e-epsilon-app

µ; null V ⇒ µ; null
e-null-app

µ;Mrep null ⇒ µ; null
e-rep-null-app

match(V1,Γ, V2) = σ

µ; (x\V1\Γ → M | ρ)V2 ⇒ µ; [V2/x, σ]M
e-rho-app1

match(V1,Γ, V2)↑
µ; (x\V1\Γ → M | ρ)V2 ⇒ µ; ρV2

e-rho-app2

µ;M :: T ⇒ µ;M
e-ascription

µ; null.l ⇒ µ; null e-rec-sel-null

µ; [l = V,RV ].l ⇒ µ;V e-rec-sel1

l1 6= l2
µ; [l1 = V,RV ].l2 ⇒ µ;RV.l2

e-rec-sel2

V1.c 7→ V2 ∈ µ

µ;V1.c ⇒ µ;V2
e-attr-read

V1.c 6∈ Dom(µ)
µ;V1.c ⇒ µ; null e-attr-read-null

µ;V1.c := V2 ⇒ µ[V1.c 7→ V2];V2
e-attr-write

D ≡ x1 : T1 = M1, . . . , xn : Tn = Mn

µ; let rec D in M ⇒ µ; [. . . , let rec D in Mi/xi, . . .]M
e-let-rec

Figure 14: RSP Operational Semantics Part 2 (without Congruence)

without the notion of purity because logic programs cannot be explicitly called in types. Twelf also
supports a form of mutable state, through dynamically added clauses. The main difference between
RSP1 and Twelf is thus the difference of paradigm: functional programming with reference-like features
versus logic programming with dynamic clauses.

A final approach that is similar to RSP1 is ATS [6]. ATS is a pattern-matching language for
programming with proofs which supports unrestricted recursion but has a decidable type-checking
problem. This is achieved by separating the terms into the “proof terms” which encode proofs and the
“dynamic terms” which allow for more powerful computation such as recursion. ATS also supports
pointers, and can reason about them using “stateful views” (see [32]). ATS allows types to mention the
reference graph explicitly, leading to greater expressivity than is possible in RSP1. The price for this
is a more complex type system. The goal with RSP1 is to find a “sweet spot” balancing expressivity
and complexity.

8 Conclusion and Future Work

We have seen a language, RSP1, which combines dependent types with imperative and computational
features. Using this language, we can implement examples where properties of data and even local
properties of the reference graph can be enforced statically. This makes it relatively straightforward to
implement examples like statically verified merge sort and binary search trees where the binary search
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tree property is statically verified. The type theory for this language has two important features. First, it
is first-order, meaning that it does not contain lambda-expressions and does not allow abstraction types
in argument positions. The latter is achieved with syntactic restrictions on the forms of the argument
types of abstraction types. Second, only pure objects, which contain no use of the computational or
imperative features of the language, are allowed into types. This is achieved with pure and impure
versions of rules that need to substitute objects into types. These developments greatly simplify the
type theory; the first-order restriction means there is no η-reduction, allowing for an untyped evaluation
relation and an easy proof of the Church-Rosser property. When combined with the restriction of only
allowing pure objects into types, this makes the proof of the decidability of equivalence checking
straightforward. Allowing only pure objects into types also ensures soundness of the type system in
the face of imperative features.

For future work, we would like to establish a sound and complete type inferencing procedure for
RSP1. Such an inference procedure would need to handle the special case of a pattern abstraction with
record patterns applied to a record. Preliminary results indicate that this would require second-order
matching, to discover the dependencies in record and computational abstraction types.

Also, we intend to add coverage checking and simple termination checking [29] and support for proof
irrelevance [20]. This would allow the use of RSP1 pattern abstractions as proofs of meta-theoretic
properties of an object logic, which would not need to be executed at run-time. They do not need
to be executed if we can determine that they would always succeed (using coverage and termination
checking) and that their results are never analyzed by any code other than more proof-irrelevant code.
This piece of future work is practically quite important, to avoid having to execute lemmas at run-time.

Finally, we would like to do more examples of verifying safety properties of imperative data struc-
tures. For example, it should be possible to enforce, through local invariants, the safety property that
the reference graph from any node is a tree. One way to do this would be to associate an id with each
node (in addition to the node’s data). Then the same idea as for the local invariants of the binary
search tree can be used, except that we require the id at a node to be strictly greater than all ids
reachable by going left and strictly less than all ids reachable by going right. Proof irrelevance is likely
to be important here, since inserting a new node into the tree would generally require updating the
ids at many (if not all) nodes. Naturally, we would need to slice away such code after type checking to
get an efficient implementation.

Acknowledgments: Thanks to Joel Brandt, Robert Klapper, and Li-Yang Tan for many discus-
sions about RSP1. Thanks also to Erran Li for discussion of the binary search tree and dag examples.
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A Proofs of Type Safety

Lemma A.1 (Type Inversion)
Assume Σ; Γ ` M : T .

1. If M ≡ c, then c : T ∈ Σ.

2. If M ≡ x, then x : T ∈ Γ.

3. If M ≡ [l = M ′, R] then T ≡ {l : T ′, x.RT}, Σ; Γ ` M ′ : T ′, and Σ; Γ ` R : [M ′/x]RT .

4. If M ≡ [l = M ′, x.R] then T ≡ {l : T ′, x.RT}, Σ; Γ ` M ′ : T ′, and Σ; Γ ` [M ′/x]R : [M ′/x]RT .

5. If M ≡ M ′ M ′′, then Σ; Γ ` M ′ : Π∗x : T ′.T ′′, Σ; Γ ` M ′′ : T ′, and [M ′′/x]T ′′ ≡ T .

6. If M ≡ Mrep M ′, then Σ; Γ ` Mrep : Πrx : T ′.T ′′, Σ; Γ ` M ′′ : T ′, and [M ′′/x]T ′′ ≡ T .

7. If M ≡ M ′.c, then Σ; Γ ` c : Πax : T ′.T ′′, Σ; Γ ` M ′ : T ′, and [M ′/x]T ′ ≡ T .

Proof: By inspection of the typing rules. �

Lemma A.2 (Equivalence Inversion)
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1. If ` T = a, then T ≡ a.

2. If ` T = {l : T ′, x.RT}, then T ≡ {l : T ′′, x.RT ′′}, ` T ′ = T ′′, and ` RT = RT ′′.

Proof: By inspection of the equivalence rules. �

Lemma A.3 (Store Typing Inversion) If Σ ` µ, V1.c 7→ V2 ∈ µ, and c : ΠaTZ .T ∈ Σ, then
Σ; · ` V2 : [V1/x]T .

Proof: By inspection of the store typing rules. �
We shall refer to these inversion theorems in the sequel collectively as Inversion.

Lemma A.4 (Reflexivity of Equivalence)
For any Mpure or T , ` Mpure = Mpure and ` T = T .

Proof: By inspection of the equivalence rules. �

Lemma A.5 (Derived Equivalences)
If ` M = M ′ and ` T = T ′, then:

1. ` M.l = M ′.l

2. ` [M/x]T = [M ′/x]T ′

3. ` [M/x]Mpure = [M ′/x]Mpure

Proof: By inspection of the equivalence rules. �

Lemma A.6 (Weakening)
If Σ; Γ ` M : T , then Σ; Γ, x : T ′ ` M : T , for x 6∈ Γ.

Proof: By straightforward induction on the derivation of Σ; Γ ` M : T . �

Lemma A.7 (Pure Substitution)
If Σ; Γ ` M : T , M is pure, and Σ; Γ, x : T ` M ′ : T ′, then Σ; Γ ` [M/x]M ′ : [M/x]T ′.

Proof: By induction on the derivation of Σ; Γ ` M ′ : T ′. This is straightforward, because M can enter
into all the types containing x, as it is pure. �

Lemma A.8 (Impure Substitution)
If Σ; Γ ` M : T , D is a derivation of Σ; Γ, x : T ` M ′ : T ′, and x is not free in any type in D, then
Σ; Γ ` [M/x]M ′ : T ′.

Proof: By induction on D. This is straightforward, as x cannot appear in any type in D. �

Lemma A.9 (Substitution)
If Σ; Γ ` M : T , D is a derivation of Σ; Γ, x : T ` M ′ : T ′, and either M is pure or x is not free in
any type in D, then Σ; Γ ` [M/x]M ′ : [M/x]T ′.

Proof: Immediate from Pure and Impure Substitution, and the fact that if x does not occur in free
in T ′, then T ′ ≡ [M/x]T ′. �
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Lemma A.10 (Strengthening)
If Σ; Γ, x : T ′,Γ′ ` M : T and x 6∈ FV (Γ) ∪ FV (M) ∪ FV (T ), then Σ; Γ,Γ′ ` M : T .

Proof: By straightforward induction on the derivation of Σ; Γ, x : T ′,Γ′ ` M : T . �

Lemma A.11 (Validity)

1. If Σ; Γ ` M : T , then Σ; Γ ` T : type.

2. If Σ; Γ ` T : K, then Σ; Γ ` K : kind.

Proof: By straightforward induction on the typing derivations. �

Lemma A.12 (Pureness of Types)
If Σ; Γ ` T : type, then either M is pure or it does not occur in T .

Proof: By straightforward induction on the derivation of Σ; Γ ` T : type. �

Lemma A.13 (Pureness of Derivations)
If D is a derivation of Σ; Γ ` M : T , then either M ′ is pure or it is not free in any type in D.

Proof: By straightforward induction on D, using Validity and Pureness of Types at every step. �

Lemma A.14 (Value Matching)
If V ≡ [M1/x1, . . . ,Mn/xn]M , then each Mi is a value.

Proof: Immediate from the definitions of substitution and value. �

Lemma A.15 (Representational Type Equivalence)
If Σ; Γ,Γ′ ` M : T , Σ; Γ ` σM : T ′, and Dom(σ) = V ars(Γ′), where M is cMrep−1 . . .Mrep−n, then
T ′ ≡α σT , and, for all i ≤ n:

1. Σ; Γ,Γ′ ` Mrep−i : Ti, and

2. Σ; Γ ` σMrep−i : σTi.

Proof: By induction on i.

Case: M ≡ c (i.e. n = 0)

σM ≡ c by definition of substitution
c : T ∈ Σ by Inversion on Σ; Γ,Γ′ ` M : T

c : T ′ ∈ Σ by Inversion on Σ; Γ,Γ′ ` σM : T ′

Σ; · ` T ′ : type since ` Σ sig

FV (T ′) = ∅ by inspection of the kinding rules
T ′ ≡ σT by definition of substitution

Case: M ≡ cMrep−1 . . .Mrep−i.

σM ≡ c (σMrep−1) . . . (σMrep−i) by definition of substitution
Σ; Γ,Γ′ ` cMrep−1 . . .Mrep−(i−1) : Πrx : T ′

1.T
′′
1 by Inversion
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Σ; Γ ` c (σMrep−1) . . . (σMrep−(i−1)) : Πrx : T ′
2.T

′′
2 by Inversion

σ(Πrx : T ′
1.T

′′
1 ) ≡ Πrx : T ′

2.T
′′
2 by IH

σT ′
1 ≡ T ′

2 and σT ′′
1 ≡ T ′′

2 by definition of substitution
[Mrep−i/x]T ′′

1 ≡ T by Inversion and above definitions
[σMrep−i/x]T ′′

2 ≡ T ′ by Inversion and above definitions
T ′ ≡ σT by definition of substitution
Σ; Γ,Γ′ ` Mrep−i : T ′

1 by Inversion and above definitions
Σ; Γ ` σMrep−i : σT ′

1 by Inversion and above definitions

�

Lemma A.16 (Substitution Terms)
If match(Mpat,Γ′, V ) = σ, Σ; Γ,Γ′ ` Mpat : T , and Σ; Γ ` V : σT , where V ars(Γ′) = {x1, . . . , xn} and
σ is [M1/x1, . . . ,Mn/xn], then for each xi occurring in Mpat such that xi : Ti ∈ Γ′, Σ; Γ ` Mi : σTi

and Mi is pure.

Proof: Proof is by induction on the form of Mpat.

Case: Mpat = x for x 6∈ Γ′.
No xi occurs in Mpat, so consequent is trivially true.

Case: Mpat = null.
No xi occurs in Mpat, so consequent is trivially true.

Case: Mpat = xi.

T ≡ Ti by Inversion
V ≡ Mi by definition of substitution
Σ; Γ ` Mi : σTi by assumption

Case: Mpat ≡ [l = V ′, RV ], V ≡ [l = σV ′, σRV ]

T ≡ {l : T ′, x.RT}, Σ; Γ,Γ′ ` V ′ : T ′, and Σ; Γ ` σV ′ : σT ′ by Inversion
Σ; Γ ` Mi : σTi for each i such that xi occurs in V ′ by IH
Σ; Γ,Γ′ ` RV : [V ′/x]RT and Σ; Γ ` σRV : σ[V ′/x]RT by Inversion
Σ; Γ ` Mi : σTi for each i such that xi occurs in RV by IH

Case: Mpat ≡ cMrep−1 . . .Mrep−n

Immediate by Representational Type Equivalence and induction on each Mrep−i. �

Lemma A.17 (Pure Evaluation)
If µ;Mpure ⇒ µ′;M , then M is pure, µ′ is identical to µ, and ` Mpure = M .

Proof: By straightforward induction on µ;Mpure ⇒ µ′;M . �

Lemma A.18 (Record Type Selection)
Assume ` RTSell M RT T . Then, for some T ′ such that ` T = T ′,

1. ` M = M ′ implies ` RTSell M ′ RT T ′,

2. ` RT = RT ′ implies ` RTSell M RT ′ T ′,
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3. M is impure implies ` RTSell M ′ RT T ′ for any M ′,

4. µ;M ⇒ µ′;M ′ implies ` RTSell M ′ RT T ′,

5. M ≡ [l′ = M ′, R] and l′ 6∈ Labels(RT ) implies
` RTSell R RT T ′, and

6. RT ≡ {l′ : T, x.RT ′} and l′ 6≡ l implies ` RTSell R [M/x]RT ′ T ′.

Proof: Part 3 is straightforward when we note that, if M is impure, then the only rules that can be
used to prove ` RTSell M RT T are rtsel-base and rtsel-impure, neither of which use the term M in
calculating T . Part 4 is straightforward from parts 1 and 3, as either M is pure, so ` M = M ′ by
Pure Evaluation, so part 1 applies, or M is impure, so part 3 applies. Part 6 is immediate when we
note that the last rule in a deduction of ` RTSell M {l′ : T, x.RT ′} T must be rtsel-pure or rtsel-impure
when l′ 6≡ l.

We prove parts 1 and 2 simultaneously, by assuming ` M = M ′ and ` RT = RT ′, for some M ′,
RT ′, and proving ` RTSell M ′ RT ′ T ′, for some T ′ such that ` T = T ′. We do this by induction on
the form of RT , the proof of ` RTSell M RT T .

Case:

RT = ` RTSell M {l : T, x.RT1} T
rtsel-base

` RT ′ ≡ {l : T ′, x.RT ′
1}, for ` T = T ′ by Inversion

` RTSell M ′ RT ′ T ′ by rtsel-base

Case:

RT =
` RTSell M ([M.l2/x]RT2) T x ∈ FV (RT2) l 6= l2

` RTSell M {l2 : T2, x.RT2} T
rtsel-pure

` RT ′ ≡ {l : T ′
2, x.RT ′

2}, for ` RT2 = RT ′
2 by Inversion

` M.l2 = M ′.l2 by Derived Equivalences
` [M.l2/x]RT2 = [M ′.l2/x]RT ′

2 by Derived Equivalences
` RTSell M ′ [M ′.l2/x]RT ′

2 T ′, for ` T = T ′ by IH
` RTSell M ′ RT ′ T ′ by rtsel-pure

Case:

RT =
` RTSell M RT2 T x 6∈ FV (RT2) l 6= l2

` RTSell M {l2 : T2, x.RT2} T
rtsel-impure

` RT ′ ≡ {l : T ′
2, x.RT ′

2}, for ` RT2 = RT ′
2 by Inversion

` RTSell M ′ RT ′
2 T ′, for ` T = T ′ by IH

` RTSell M ′ RT ′ T ′ by rtsel-impure

We also prove part 5 by induction on the form of RT .

Case:

RT = ` RTSell [l′ = M,R] {l : T, x.RT1} T
rtsel-base
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` RTSell R {l : T, x.RT1} T by rtsel-base

` T = T by Reflexivity of Equivalence

Case:

RT =
x ∈ FV (RT2) l 6= l2 [l′ = M,R] is pure
` RTSell [l′ = M,R] ([[l′ = M,R].l2/x]RT2) T

` RTSell [l′ = M,R] {l2 : T2, x.RT2} T
rtsel-pure

l′ 6≡ l2 since l′ 6∈ Labels({l2 : T2, x.RT2})
[l′ = M,R].l2 ⇒ R.l2 by e-rec-sel2

` [l′ = M,R].l2 = R.l2 by Pure Evaluation
` RTSell R [[l′ = M,R].l2/x]RT2 T ′, for ` T = T ′ by IH
` RTSell R [R.l2/x]RT2 T ′ by Part 1
` RTSell R {l2 : T2, x.RT2} T ′ by rtsel-pure

Case:

RT =
` RTSell [l′ = M ′, R] RT2 T x 6∈ FV (RT2) l 6= l2

` RTSell [l′ = M ′, R] {l2 : T2, x.RT2} T
rtsel-impure

` RTSell R RT2 T ′, for ` T = T ′ by IH
` RTSell R {l2 : T2, x.RT2} T ′ by rtsel-impure

�

Lemma A.19 (Equivalent Substitutions)
If Σ; Γ ` M1 : T , Σ; Γ ` M2 : T , Σ; Γ ` [M1/x]M : T ′, and either

1. ` M1 = M2, or

2. M1 is impure,

then Σ; Γ ` [M2/x]M : T ′.

Proof: Proof is by induction on D, the derivation of Σ; Γ ` [M1/x]M : T ′. Most of the cases are
straightforward, so we only give a few of the interesting ones.

Case:

D =
Σ; Γ ` [M1/x]M ′ : T1 Σ; Γ, z : T1 ` RT : type
Σ; Γ ` [[M1/x]M ′/y, M1/x]R : [[M1/x]M ′/z]RT

Σ; Γ ` [l = [M1/x]M ′, y.[M1/x]R] : {l : T1, z.RT} t-record

Σ; Γ ` [M2/x]M ′ : T1 by IH
Σ; Γ ` [[M2/x]M ′/y, M1/x]R : [[M1/x]M ′/z]RT by IH
x 6∈ FV ([M2/x]M ′) by definition of substitution
y 6∈ FV (M1) because of capture-avoiding substitution
[[M2/x]M ′/y, M1/x]R ≡ [M1/x, [M2/x]M ′/y]R by definition of substitution
Σ; Γ ` [M1/x, [M2/x]M ′/y]R : [[M1/x]M ′/z]RT by above equivalence
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Σ; Γ ` [M2/x, [M2/x]M ′/y]R : [[M1/x]M ′/z]RT by IH
y 6∈ FV (M2) because of capture-avoiding substitution
[[M2/x]M ′/y, M2/x]R ≡ [M2/x, [M2/x]M ′/y]R by definition of substitution
Σ; Γ ` [[M2/x]M ′/y, M2/x]R : [[M1/x]M ′/z]RT by above equivalence

Subcase: [M1/x]M ′ is pure and ` M1 = M2.

M ′ is pure by definition of purity
` [M1/x]M ′ = [M2/x]M ′ by Derived Equivalences
` [[M1/x]M ′/z]RT = [[M2/x]M ′/z]RT by Derived Equivalences
Σ; Γ ` [[M2/x]M ′/y, M2/x]R : [[M2/x]M ′/z]RT by t-conv

Σ; Γ ` [l = [M1/x]M ′, y.[M1/x]R] : {l : T1, z.RT} by t-record

Subcase: [M1/x]M ′ is pure and M1 is impure.

M1 does not occur in [M1/x]M ′ by definition of purity
x 6∈ FV (M ′) by definition of substitution
[M1/x]M ′ ≡ [M2/x]M ′ by definition of substitution
[[M1/x]M ′/z]RT ≡ [[M2/x]M ′/z]RT by definition of substitution
Σ; Γ ` [[M2/x]M ′/y, M2/x]R : [[M2/x]M ′/z]RT by above equivalence
Σ; Γ ` [l = [M1/x]M ′, y.[M1/x]R] : {l : T1, z.RT} by t-record

Subcase: [M1/x]M ′ is impure.

[M1/x]M ′ does not occur in [[M1/x]M ′/z]RT by Pureness of Derivations
z 6∈ FV (RT ) by definition of substitution
[[M1/x]M ′/z]RT ≡ [[M2/x]M ′/z]RT by definition of substitution
Σ; Γ ` [[M2/x]M ′/y, M2/x]R : [[M2/x]M ′/z]RT by above equivalence
Σ; Γ ` [l = [M1/x]M ′, y.[M1/x]R] : {l : T1, z.RT} by t-record

Case:

D =
Σ; Γ ` M ′ : RT ` RTSell M ′ RT T ′

Σ; Γ ` M ′.l : T ′ t-rec-select

RTSell M ′ RT T ′′ for some T ′′ such that ` T ′ = T ′′ by Record Type Selection
Σ; Γ ` M ′.l : T ′′ by t-rec-select

Σ; Γ ` M ′.l : T ′ by t-conv

Case:

D =
y ∈ FV (T2)

Σ; Γ ` [M1/x]M ′ : Πr,cy : T1.T2

[M1/x]M ′′ is pure
Σ; Γ ` [M1/x]M ′′ : T1

Σ; Γ ` [M1/x]M ′ [M2/x]M ′′ : [[M1/x]M ′′/y]T2
t-{r,c}-pure-app

Σ; Γ ` [M2/x]M ′ : Πr,cy : T1.T2 by IH
Σ; Γ ` [M2/x]M ′′ : T1 by IH
M ′′ is pure by definition of purity
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Subcase: ` M1 = M2.

[M2/x]M ′′ is pure by definition of purity
` [M1/x]M ′′ = [M2/x]M ′′ by Derived Equivalences
Σ; Γ ` [M2/x]M ′[M2/x]M ′′ : [[M2/x]M ′′/y]T2 by t-{r,c}-pure-app

Σ; Γ ` [M2/x]M ′[M2/x]M ′′ : [[M1/x]M ′′/y]T2 by t-conv

Subcase: M1 is impure.

x 6∈ FV (M ′′) by definition of purity
[M1/x]M ′′ ≡ [M2/x]M ′′ by definition of substitution
[M2/x]M ′′ is pure by above equivalence
Σ; Γ ` [M2/x]M ′[M2/x]M ′′ : [[M1/x]M ′′/y]T2 by t-{r,c}-pure-app and above equivalence

�

Lemma A.20 (Canonical Forms)
Assume Σ; Γ ` V : T , for V 6≡ null.

1. If T ≡ a Mpure−1 . . .Mpure−n, then M ≡ c Mpure−1 . . .Mpure−m.

2. If T ≡ {l : T, x.RT}, then M ≡ [l = V,RV ].

3. If T ≡ Πrx : T1.T2, then M ≡ c Mpure−1 . . .Mpure−m.

4. If T ≡ Πcx : T1.T2, then M ≡ ρ.

5. If T ≡ Πax : T1.T2, then M ≡ c.

Proof: Immediate by inspection of the typing rules. �

Lemma A.21 (Preservation)
If Σ ` µ, Σ; Γ ` M : T , and µ;M ⇒ µ′;M ′, then Σ ` µ′ and Σ; Γ ` M ′ : T .

Proof: Proof is by induction on the forms of D and E , the proofs of Σ; Γ ` M : T and µ;M ⇒ µ′;M ′,
respectively.

Case:

D =
Σ; Γ ` M : T ′ ` T = T ′

Σ; Γ ` M : T
t-conv

Σ; Γ ` M ′ : T ′ and Σ ` µ′ by IH
Σ; Γ ` M ′ : T by t-conv

Case:

E =
µ;M1 ⇒ µ′;M ′

1

µ;M1M2 ⇒ µ′;M ′
1M2

e-app-congr1

Subcase:
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D =
Σ; Γ ` M1 : Π{r,c}x : TZ .T Σ; Γ ` M2 : Tz x ∈ FV (T )

Σ; Γ ` M1M2 : [M2/x]T
t-{r,c}-pure-app

Σ; Γ ` M ′
1 : Π{r,c}x : TZ .T and Σ ` µ′ by IH

Σ; Γ ` M ′
1M2 : [M2/x]T by t-{r,c}-pure-app

Subcase:

D =
Σ; Γ ` M1 : Π{r,c}x : TZ .T Σ; Γ ` M2 : Tz

Σ; Γ ` M1M2 : T
t-{r,c}-impure-app

Similar to above.
Case:

E =
µ;M2 ⇒ µ′;M ′

2

µ;V1M2 ⇒ µ′;V1M
′
2

e-app-congr2

Subcase:

D =
Σ; Γ ` M1 : Π{r,c}x : TZ .T Σ; Γ ` M2 : Tz x ∈ FV (T )

Σ; Γ ` M1M2 : [M2/x]T
t-{r,c}-pure-app

M2 is pure by assumption
M ′

2 is pure and ` M2 = M ′
2 by Pure Evaluation

` [M2/x]T = [M ′
2/x]T by Derived Equivalences

Σ; Γ ` M ′
2 : Tz and Σ ` µ′ by IH

Σ; Γ ` M1M
′
2 : [M ′

2/x]T by t-{r,c}-pure-app

Σ; Γ ` M1M
′
2 : [M2/x]T by t-conv

Subcase:

D =
Σ; Γ ` M1 : Π{r,c}x : TZ .T Σ; Γ ` M2 : Tz x 6∈ FV (T )

Σ; Γ ` M1M2 : T
t-{r,c}-impure-app

Σ; Γ ` M ′
2 : Tz and Σ ` µ′ by IH

Σ; Γ ` M1M
′
2 : T by t-{r,c}-impure-app

Case:

E =
µ;M ⇒ µ′;M ′

µ;M.l ⇒ µ′;M ′.l
e-rec-sel-congr

D =
Σ; Γ ` M : RT ` RTSell M RT T

Σ; Γ ` M.l : T
t-rec-select

Σ; Γ ` M ′ : RT and Σ ` µ′ by IH
` RTSell M ′ RT T by Record Type Selection
Σ; Γ ` M.l : T by t-rec-select

Case:

E =
µ;M ⇒ µ′;M ′

µ;M.c ⇒ µ′;M ′.c
e-attr-read-congr
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Subcase:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` M : TZ x ∈ FV (T2)

Σ; Γ ` M.c : [M/x]T
t-attr-read-pure

M is pure by assumption
M ′ is pure and ` M = M ′ by Pure Evaluation
` [M/x]T = [M ′/x]T by Derived Equivalences
Σ; Γ ` M ′ : Tz and Σ ` µ′ by IH
Σ; Γ ` M ′.c : [M ′/x]T by t-attr-read-pure

Σ; Γ ` M ′.c : [M/x]T by t-conv

Subcase:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` M : TZ x 6∈ FV (T )

Σ; Γ ` M.c : T
t-attr-read-impure

Σ; Γ ` M ′ : Tz and Σ ` µ′ by IH
Σ; Γ ` M ′.c : T by t-attr-read-impure

Case:

E =
µ;M1 ⇒ µ′;M ′

1

µ;M1.c := M2 ⇒ µ′;M ′
1.c := M2

e-attr-write-congr1

D =
Σ; Γ ` M1.c : T Σ; Γ ` M2 : T

Σ; Γ ` M1.c := M2 : T
t-attr-write

Σ; Γ ` M ′
1.c : T and Σ ` µ′ by previous case

Σ; Γ ` M ′
1.c := M2 : T by t-attr-write

Case:

E =
µ;M ⇒ µ′;M ′

µ;V.c := M ⇒ µ′;V.c := M
e-attr-write-congr2

D =
Σ; Γ ` V.c : T Σ; Γ ` M : T

Σ; Γ ` V.c := M : T
t-attr-write

Σ; Γ ` M ′ : T and Σ ` µ′ by IH
Σ; Γ ` V.c := M ′ : T by t-attr-write

Case:

E =
µ;M ⇒ µ′;M ′

µ; [l = M,x.R] ⇒ µ′; [l = M ′, x.R]
e-rec-congr1

D =
Σ; Γ ` M : T Σ; Γ ` [M/x]R : [M/y]RT Σ; Γ, y : T ` RT : type

Σ; Γ ` [l = M,x.R] : {l : T, y.RT} t-record

Σ; Γ ` M ′ : T and Σ ` µ′ by IH
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Subcase: M is pure.

` M = M ′ by Pure Evaluation
Σ; Γ, x : T ` [M ′/x]R : [M/y]RT by Equivalent Substitutions
` [M/y]RT = [M ′/y]RT by Derived Equivalences
Σ; Γ, x : T ` [M ′/x]R : [M ′/y]RT by t-conv

Σ; Γ ` [l = M ′, x.R] : {l : T, y.RT} by t-record

Subcase: M is impure.

Σ; Γ, x : T ` [M ′/x]R : [M/y]RT by Equivalent Substitutions
M does not occur in [M/y]RT by Validity and Pureness of Types
y 6∈ FV (RT ) by definition of substitution
[M/y]RT ≡ [M ′/y]RT by definition of substitution
Σ; Γ, x : T ` [M ′/x]R : [M ′/y]RT by above equivalence
Σ; Γ ` [l = M ′, x.R] : {l : T, y.RT} by t-record

Case:

E =
µ;M ⇒ µ′;M ′

µ; [l = M,R] ⇒ µ′; [l = M ′, R]
e-rec-congr2

D =
Σ; Γ ` M : T Σ; Γ ` R : [M/y]RT Σ; Γ, y : T ` RT : type

Σ; Γ ` [l = M,R] : {l : T, y.RT} t-indep-record

Subcase: M is pure

Σ; Γ ` M ′ : T and Σ ` µ′ by IH
` M ′ = M by Pure Evaluation
` [M/y]RT = [M ′/x]RT by Derived Equivalences
Σ; Γ ` R : [M ′/x]RT by t-conv

Σ; Γ ` [l = M ′, R] : {l : T, x.RT} by t-indep-record

Subcase: M is impure

Σ; Γ ` M ′ : T and Σ ` µ′ by IH
M does not occur in [M/y]RT by Validity and Pureness of Types
y 6∈ FV (RT ) by definition of substitution
[M/y]RT ≡ RT ≡ [M ′/x]RT by definition of substitution
Σ; Γ ` R : [M ′/y]RT by above equivalences
Σ; Γ ` [l = M ′, R] : {l : T, y.RT} by t-indep-record

Case:

E = µ; [l = V, x.R] ⇒ µ; [l = V, [V/x]R]
e-rec-congr3

D =
Σ; Γ ` V : T Σ; Γ ` [V/x]R : [V/y]RT Σ; Γ, y : T ` RT : type

Σ; Γ ` [l = V, x.R] : {l : T, y.RT} t-record
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Σ; Γ ` [l = V, [V/x]R] : {l : T, x.RT} by t-indep-record

Case:

E =
µ;R ⇒ µ′;R′

µ; [l = V R] ⇒ µ′; [l = V,R′]
e-rec-congr4

D =
Σ; Γ ` V : T Σ; Γ ` R : [Vpure/y]RT Σ; Γ, y : T ` RT : type

Σ; Γ ` [l = V,R] : {l : T, y.RT} t-indep-record

Σ; Γ ` R′ : [V/x]RT and Σ ` µ′ by IH
Σ; Γ ` [l = V,R′ : {l : T, x.RT} by t-indep-record

Case:

E = µ; [l = null, RV ] ⇒ µ; null e-rec-null1

Immediate by Validity and t-null.
Case:

E = µ; [l = Vpure,null] ⇒ µ; null e-rec-null2

Immediate by Validity and t-null.
Case:

E = µ; ε V ⇒ µ; null
e-epsilon-app

Immediate by Validity and t-null.
Case:

E = µ; null V ⇒ µ; null
e-null-app

Immediate by Validity and t-null.
Case:

E = µ;Mrep null ⇒ µ; null
e-rep-null-app

Immediate by Validity and t-null.
Case:

E =
match(Mpat,Γ′, V ) = σ

µ; (x\Mpat\Γ′ → M | ρ)V ⇒ µ; [V/x, σ]M
e-rho-app1

Subcase: we use t-c-pure-app:

D′ =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

D =
D′ Σ; Γ ` V : Tz x ∈ FV (T ) V is pure

Σ; Γ ` (x\Mpat\Γ′ → M | ρ)V : [V/x]T
t-c-pure-app

Σ; Γ ` Mi : Ti for each xi : Ti ∈ Γ′ and Mi/xi ∈ σ by Substitution Terms
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M1, . . . ,Mn are subterms of V by definition of match
M1, . . . ,Mn are pure since subterms of pure terms are pure
Σ; Γ ` σ[Mpat/x]M : σ[Mpat/x]T by Pure Substitution
σ[Mpat/x]M ≡ [V/x](σM) by definition of substitution
σ[Mpat/x]T ≡ [V/x](σT ) by definition of substitution
xi 6∈ FV (Γ) since xi ∈ Γ′ and Σ ` Γ,Γ′ ctxt

Σ; Γ ` T : type by Validity and Inversion
xi 6∈ FV (T ) since xi 6∈ FV (Γ)
σT ≡ T by definition of substitution
Σ; Γ ` [V/x, σ]M : [V/x]T by above equivalences

Subcase: V is representational, but we use t-c-impure-app:

D′ =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

D =
D′ Σ; Γ ` V : Tz x 6∈ FV (T )

Σ; Γ ` (x\Mpat\Γ′ → M | ρ)V : T
t-c-impure-app

Similar to previous subcase.
Subcase: V ≡ null:

D′ =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

D =
D′ Σ; Γ ` null : Tz x 6∈ FV (T )

Σ; Γ ` (x\Mpat\Γ′ → M | ρ)null : T
t-c-impure-app

Mpat ≡ null and Γ′ = · only the pattern null matches null
[V/x, σ]M ≡ [null/x]M by above equivalence
[Mpat/x]T ≡ T since x 6∈ FV (T )
Σ; Γ ` [V/x, σ]M : [V/x]T by above equivalences

Subcase: No subcase for V ≡ ρ, as no ρ can have a type TZ.
Case:

E =
match(Mpat,Γ, V )↑

µ; (x\Mpat\Γ → M | ρ)V ⇒ µ; ρV
e-rho-app2

Subcase:

D′ =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

D =
D′ Σ; Γ ` M2 : Tz x ∈ FV (T )

Σ; Γ ` (x\Mpat\Γ′ → M | ρ)V : [V/x]T
t-c-pure-app
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Σ; Γ ` ρ V : [V/x]T by t-c-pure-app

Subcase:

D′ =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ,Γ′ ` [Mpat/x]M : [Mpat/x]T
Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

D =
D′ Σ; Γ ` M : Tz x 6∈ FV (T )

Σ; Γ ` (x\Mpat\Γ′ → M | ρ)V : T
t-c-impure-app

Σ; Γ ` ρ V : T by t-c-impure-app

Case:

E = µ;M :: T ⇒ µ;M
e-ascription

D =
Σ; Γ ` M : T

Σ; Γ ` (M :: T ) : T
t-asc

Immediate, as Σ; Γ ` M : T .
Case:

E = µ; null.l ⇒ µ; null e-rec-sel-null

Immediate by t-null.
Case:

E = µ; [l = V,RV ].l ⇒ µ;V e-rec-sel1

D′ =
Σ; Γ ` V : T Σ; Γ ` R : [V/x]RT

Σ; Γ ` [l = V,R] : {l : T, x.RT} t-indep-record

D = D′ ` RTSell M {l : T, x.RT} T
rtsel-base

Σ; Γ ` [l = V,R].l : T
t-rec-select

Immediate, as Σ; Γ ` V : T .
Case:

E =
l1 6= l2

µ; [l1 = V,RV ].l2 ⇒ µ;RV.l2
e-rec-sel2

D′ =
Σ; Γ ` V : T Σ; Γ ` RV : [V/x]RT

Σ; Γ ` [l1 = V,RV ] : {l1 : T, x.RT} t-indep-record

D =
D′ ` RTSell2 [l1 = V,RV ] {l1 : T, x.RT} T

Σ; Γ ` [l1 = V,RV ].l2 : T
t-rec-select

` RTSell2 [l1 = V,RV ] [V/x]RT T ′, for ` T = T ′ by Record Type Selection
` RTSell2 RV [V/x]RT T ′ by Record Type Selection
Σ; Γ ` RV.l2 : T ′ by t-rec-select
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Σ; Γ ` RV.l2 : T by t-conv

Case:

E =
V1.c 7→ V2 ∈ µ

µ;V1.c ⇒ µ;V2
e-attr-read

Subcase:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` V1 : TZ x ∈ FV (T2)

Σ; Γ ` V1.c : [V1/x]T
t-attr-read-pure

Σ; · ` V2 : [V1/x]T by Inversion on Σ ` µ

Σ; Γ ` V2 : [V1/x]T by Weakening

Subcase:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` V1 : TZ x 6∈ FV (T )

Σ; Γ ` V1.c : T
t-attr-read-impure

Σ; · ` V2 : [V1/x]T by Inversion on Σ ` µ

[V1/x]T ≡ T since x 6∈ FV (T )
Σ; Γ ` V2 : [V1/x]T by Weakening
Σ; Γ ` V2 : T by above equivalence

Case:

E =
V1.c 6∈ Dom(µ)
µ;V1.c ⇒ µ; null e-attr-read-null

Immediate by Validity and t-null.
Case:

E = µ;V1.c := V2 ⇒ µ[V1.c 7→ V2];V2
e-attr-write

D =
Σ; Γ ` V1.c : T Σ; Γ ` V2 : T

Σ; Γ ` V1.c := V2 : T
t-attr-write

FV (V1) = FV (V2){} since values have no free variables
Σ; · ` V2 : T by Strengthening
Σ; Γ ` V1 : TZ by Inversion
Σ; · ` V2 : T by Strengthening
c : (Πax : TZ.T ′) ∈ Σ by Inversion
Σ ` µ[V1.c 7→ V2] by inspection of the operational typing rules

Case:

E =
D ≡ d1 = M1, . . . , dn = Mn

µ; let rec D in M ⇒ µ; [. . . , let rec D in Mi/di, . . .]M
e-let-rec

D =
D′

Σ; Γ, d1 : T1, . . . , dn : Tn ` M : T Σ; Γ, d1 : T1, . . . , dn : Tn ` Mi : Ti

Σ; Γ ` let rec D in M : T
t-let-rec

37



Σ; Γ ` let rec D in Mi : Ti by t-let-rec

no di is free in a type in D′ by Pureness of Derivations
Σ; Γ ` [. . . , let rec D in Mi/di, . . .]M : T by Impure Substitution

�

Lemma A.22 (Progress)
If Σ ` µ and Σ; · ` M : T , then either M is a value, or µ;M ⇒ µ′;M ′, for some µ′ and M ′.

Proof: Proof is by induction on the form of D, the proof of Σ; Γ ` M : T .

Case:

D =
c : T ∈ Σ

Σ; · ` c : T
t-const

Immediate, as c is a value.
Case: No case for t-var.
Case:

D =
Σ; Γ ` T : type
Σ; Γ ` null : T

t-null

Immediate, as null is a value.
Case:

D =
Σ; Γ ` M : T

Σ; Γ ` (M :: T ) : T
t-asc

Immediate by IH.
Case:

D =
Σ; Γ ` M : T Σ; Γ ` T ′ : type ` T = T ′

Σ; Γ ` M : T ′ t-conv

Immediate by IH.
Case:

D =
Σ; Γ ` ρ : Πcx : TZ .T Σ; Γ, x : TZ ,Γ′ ` M : T Σ; Γ,Γ′ ` Mpat : TZ FV (Mpat) = Vars(Γ′)

Σ; Γ ` x\Mpat\Γ′ → M | ρ : Πcx : TZ .T
t-rho

Immediate, as x\Mpat\Γ′ → M | ρ is a value.
Case:

D =
Σ; Γ ` Πcx : Tz.T : type

Σ; Γ ` ε : Πcx : Tz.T
t-epsilon

Immediate, as ε is a value.
Case:

D =
Σ; Γ ` M : Πr,cx : T1.T2 Σ; Γ ` Mpure : T1 x ∈ FV (T2)

Σ; Γ ` M Mpure : [Mpure/x]T2
t-{r,c}-pure-app

Subcase: M is not a value.

µ;M ⇒ µ′;M ′ for some µ′, M ′ by IH
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µ;M Mpure ⇒ µ′;M ′ Mpure by e-app-congr1

Subcase: M is a value, but Mpure is not a value.

µ;Mpure ⇒ µ′;M ′ for some µ′, M ′ by IH
µ;M Mpure ⇒ µ′;M M ′ by e-app-congr2

Subcase: Mpure is a value, M ≡ x\Mpat\Γ′ → M ′ | ρ, and match(Mpat,Γ′,Mpure) = σ.

µ;M Mpure ⇒ µ; [Mpure/x, σ]M ′ by e-rho-app1

Subcase: Mpure is a value, M ≡ x\Mpat\Γ′ → M ′ | ρ, and match(Mpat,Γ′,Mpure)↑.

µ;M Mpure ⇒ µ; ρ by e-rho-app2

Subcase: Mpure is a value, and M ≡ ε.

µ;M Mpure ⇒ µ; null by e-epsilon-app

Subcase: Mpure is a value, and M ≡ null.

µ;M Mpure ⇒ µ; null by e-null-app

Case:

D =
Σ; Γ ` M1 : Πr,cx : T1.T2 Σ; Γ ` M2 : T1 x 6∈ FV (T2)

Σ; Γ ` M1 M2 : T2
t-{r,c}-impure-app

Similar to previous case, but includes Mrep null, which evaluates by e-rep-null-app.
Case:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` Mpure : TZ x ∈ FV (T2)

Σ; Γ ` Mpure.c : [Mpure/x]T
t-attr-read-pure

Subcase: Mpure is not a value.

µ;Mpure ⇒ µ′;M ′ by IH
µ;Mpure.c ⇒ µ′;M ′.c by e-attr-read-congr

Subcase: Mpure is a value, and Mpure.c 7→ V ∈ µ.

µ;Mpure.c ⇒ µ;V by e-attr-read

Subcase: Mpure is a value, and Mpure.c 6∈ Dom(µ).

µ;Mpure.c ⇒ µ; null by e-attr-read-null

Case:

D =
Σ; Γ ` c : Πax : TZ .T Σ; Γ ` M : TZ x 6∈ FV (T )

Σ; Γ ` M.c : T
t-attr-read-impure

Similar to previous case.
Case:
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D =
Σ; Γ ` M1.c : T Σ; Γ ` M2 : T

Σ; Γ ` M1.c := M2 : T
t-attr-write

Σ; · ` M1 : T ′ by Inversion
M1 is a value or µ;M1 ⇒ µ′;M ′

1 by IH
M2 is a value or µ;M2 ⇒ µ′;M ′

2 by IH

Subcase: M1 is not a value, i.e. µ;M1 ⇒ µ′;M ′
1.

µ;M1.c := M2 ⇒ µ′;M ′
1.c := M2 by e-attr-write-congr1

Subcase: M2 is not a value, i.e. µ;M2 ⇒ µ′;M ′
2.

µ;M1.c := M2 ⇒ µ′;M1.c := M ′
2 by e-attr-write-congr2

Subcase: M1 and M2 are values.

µ;M1.c := M2 ⇒ µ[M1.c 7→ M2];M2 by e-attr-write

Case:

D = Σ; Γ ` [] : {}
t-empty-rec

Immediate, as [] is a value.
Case:

D =
Σ; Γ ` M : RT ` RTSell M RT T

Σ; Γ ` M.l : T
t-rec-select

M is a value or µ;M ⇒ µ′;M by IH
M ≡ null, M ≡ [l′ = V,RV ], or µ;M ⇒ µ′;M by Canonical Forms

Subcase: M ≡ null.

µ;M.l ⇒ null by e-rec-sel-null

Subcase: M ≡ [l′ = V,RV ] for l′ = l.

µ;M ⇒ µ;V by e-rec-sel1

Subcase: M ≡ [l′ = V,RV ] for l′ 6= l.

µ;M ⇒ µ;RV.l by e-rec-sel2

Subcase: µ;M ⇒ µ′;M ′.

µ;M.l ⇒ µ′;M ′.l by e-rec-sel-congr

Case:

D =
Σ; Γ ` M : T Σ; Γ ` [M/x]R : [M/x]RT

Σ; Γ ` [l = M,x.R] : {l : T, x.RT} t-record
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M is a value or µ;M ⇒ µ′;M ′ by IH

Subcase: µ;M ⇒ µ′;M ′.

µ; [l = M,x.R] ⇒ µ′; [l = M ′, x.R] by e-rec-congr1

Subcase: M is a value.

µ; [l = M,x.R] ⇒ µ′; [l = M, [M/x]R] by e-rec-congr3

Case:

D =
Σ; Γ ` M : T Σ; Γ ` R : [M/x]RT

Σ; Γ ` [l = M,R] : {l : T, x.RT} t-indep-record

M is a value or µ;M ⇒ µ′;M ′ by IH
R is a value or µ;R ⇒ µ′;R′ by IH

Subcase: µ;M ⇒ µ′;M ′.

µ; [l = M,R] ⇒ µ′; [l = M ′, R] by e-rec-congr2

Subcase: M is a value, but µ;R ⇒ µ′;R′.

µ; [l = M,R] ⇒ µ′; [l = M,R′] by e-rec-congr4

Subcase: M is a pure value and R is a record value.
[l = M,R] is then a value.

Subcase: M is null and R is a record value.
Immediate by e-rec-null-1.

Subcase: M is a pure value and R is null.
Immediate by e-rec-null-2.

Case:

D =
Σ; Γ, d1 : T1, . . . , dn : Tn ` M : T Σ; Γ, d1 : T1, . . . , dn : Tn ` Mi : Ti

Σ; Γ ` let rec D in M : T
t-let-rec

Immediate by e-let-rec.
�

Theorem A.1 (Type Safety)
If Σ; Γ ` M : T , Σ; Γ ` µ, and µ;M ⇒∗ µ′;M ′, then M ′ is either a value or can evaluate another step.

Proof: Immediate from Preservation and Progress. �

Theorem A.2 (Decidability of Equivalence)
For any T1, T2 and M1, M2, it is decidable whether ` T1 = T2 and whether ` M1 = M2.

Proof: To establish the decidability of object equivalence, note that the only computation possible on
pure objects is that of record selection, which always decreases the size of the object. Thus evaluation of
pure objects always terminates, and since evaluation is deterministic, decidability of object equivalence
follows. Decidability of type equivalence follows directly from that of object equivalence, as, other than
the rule for type application, which uses object equivalence, type equivalence is simply a structural
decomposition, which must match the syntax of the type in question. �
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