
The Recursive Polarized Dual Calculus

Aaron Stump
Computer Science

The University of Iowa
Iowa City, Iowa, USA
astump@acm.org

Abstract

This paper introduces the Recursive Polarized Dual Calculus (RP-
DC), based on Wadler’s Dual Calculus. RP-DC features a polar-
ized form of reduction, which enables several simplifications over
previous related systems. It also adds inductive types with recur-
sion, from which coinductive types with corecursion can be de-
fined. Typing and reduction relations are defined for RP-DC, and
we consider several examples of practical programming. Logical
consistency is proved, as well as a canonicity theorem showing that
all closed values of a certain family of types are canonical. This
shows how RP-DC can be used for practical programming, where
canonical final results are required.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.4.1 [Mathematical
Logic]: Proof Theory

Keywords Dual Calculus; classical type theory; mixed induc-
tion/coinduction

1. Introduction

Starting with the seminal observation of Griffin [10], a number of
authors have sought to develop type theories corresponding to clas-
sical logic, thus extending the well-known Curry-Howard isomor-
phism beyond intuitionistic logic. Among the most influential of
such Computational Classical Type Theories (CCTTs) are those of
Parigot, Curien and Herbelin, and Wadler [7, 16, 18]. This program
has obvious theoretical appeal – to lift a connection that has been
remarkably fruitful from intuitionistic to classical logic – as well as
practical motivations:

1. Some natural forms of reasoning are simply not possible con-
structively. A beautiful example is given in a recent paper by
Bezem, Nakata, and Uustalu [5], which shows, among other
results, that various natural reasoning principles about infinite
streams are equivalent to the Lesser Principle of Omniscience
(an infinite stream of red/blue values is either all blue or con-
tains a red value somewhere), which is not computationally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLPV ’14, January 21, 2014, San Diego, CA, USA.
Copyright © 2014 ACM 978-1-4503-2567-7/14/01. . . $15.00.
http://dx.doi.org/10.1145/2541568.2541575

realizable. For reasoning about general-recursive programs or
computations on infinite streams, classical logic is needed in
some cases. Therefore, type-theoretic support for classical rea-
soning is an important goal.

2. Most programming languages include some form of control
operator, like exceptions or call/cc in Scheme, possibly in
quite refined forms [8, 9]. Griffin’s observation was that the
types one naturally assigns to control operators like call/cc
correspond to strictly classical validities. A type-theoretic view
of classical logic promises to add support for control operators
– a powerful idiom of practical programming – to type theory.
We have the challenge of explaining how a language embracing
the nonconstructivity of classical logic can still be suitable for
programming (the paradigmatic informationally constructive
activity).

3. The problem of combining induction and coinduction in a ter-
minating type theory has received significant attention recently
(e.g., [1, 4]). In some CCTTs, such as Wadler’s Dual Calculus
(DC) [18], the dualities of classical logic are clearly expressed
in the type system. One can hope that the categorical duality be-
tween induction and coinduction could be expressed formally in
such a system.

This paper proposes the Recursive Polarized Dual Calculus (RP-
DC), based on DC. RP-DC differs from DC on several design
points. First, the core of the type theory is based just on conjunction
and negation, with disjunction and implication defined as usual in
terms of these, along with their term constructs. The reductions
one would expect for the term constructs are derivable. For this,
I found it necessary to add a polarity p ∈ {+,−} to the reduction
judgment p t1 • t2 p′ t ′1 • t ′2. RP-DC also uses a single polarized
typing judgment Γ ` t : p T , rather than separate left and right
judgments, as in DC. Another design goal is to pave the way for
adding dependent types to the calculus, which is currently simply
typed. This is done by adopting a different form ι x .t , instead of
ι1t and ι2t, for terms which refute conjunctions.

RP-DC includes recursive types, and a term construct for recur-
sion – additions already considered for DC by Kimura and Tat-
suta [11]. But they take both µ-types (inductive) and ν-types
(co-inductive) as primitive notions in their system DCµν . In con-
trast, RP-DC takes µ-types as primitive, and defines ν X .T as
¬(µX .¬[¬X /X]T). This definition is standard in propositional
µ-calculus [12]. The reduction rules for the recursor are much sim-
pler in RP-DC than in DCµν , which rely on a complex meta-level
function monoX.CA,B,x.MN [11]. In RP-DC, the recursor uses an
accumulator, and so is similar to continuation-passing style (well-
known to be as expressive as more flexible forms of recursion [3]).

This paper also resolves the tension between the constructive nature
of programming with control operators, and the nonconstructive

character of classical logic. This is done first by identifying the
locus of nonconstructivity in the failure, in general, of a property
we can call canonicity. In the absence of control operators, typable
closed normal forms are always values of certain canonical forms.
Once control operators are added, however, canonicity is lost in
general: some types are inhabited by closed normal forms which
are not canonical in any obvious sense. The paper identifies a class
of types containing the algebraic datatypes, for which a canonicity
property does indeed hold. This is proved in Section 10.

To summarize the main contributions of RP-DC:

1. Typing and reduction rules for standard type constructs are
derivable from a logically minimal set consisting of conjunc-
tion and negation, thanks to a polarized form of the reduction
relation.

2. Recursion receives a novel formulation that is significantly sim-
pler than in previous work [11], from which corecursion can be
defined.

3. Two major metatheoretic results are established: logical consis-
tency, which says that not every type is inhabited; and a canon-
icity theorem.

The ultimate goal is to design and implement a dependent type
theory corresponding to classical logic, with direct support for
control operators, a natural dual formulation supporting mixed
induction/co-induction, and an identified subset of types where
canonicity holds. Such a system would support verification by clas-
sical reasoning for pure functional programs with control, using
both inductive and coinductive types. No existing type-theoretic
verification system provides all these features.

2. Syntax of RP-DC

The syntax of types is:

types T ::= X | µX .T | T ∧ T ′ | ¬T
The type constructs are type variables X , inductive types µX .T ,
conjunctions T ∧ T ′, and negations ¬T . The scope of µ is as
far to the right as possible, and negation binds more tightly than
conjunction. The typing rules will restrict the bodies T of inductive
types µX .T to have only positive occurrences of X . In addition,
we make the following definitions:

⊥ := µX .X
> := ¬ ⊥
T ∨ T ′ := ¬(¬T ∧ ¬T ′)
T → T ′ := ¬(T ∧ ¬T ′)
ν X .T := ¬µX .¬[¬X /X]T

The reader can easily confirm that the definitions of disjunction and
implication are classically valid under the usual semantics of clas-
sical propositional logic. In the previous systems by Wadler [18]
and Kimura and Tatsuta [11], some of these types were taken as
primitive. We will see definitions of their term constructs below.

The syntax of terms is:

terms t ::= x | haltT | (t , t ′) | ι x .t |not t |
δ x .t ·t ′ | x [t] | rec x [y = t].t ′

The term haltT represents a continuation for receiving the final
result on computation. The term (t , t ′) is pairing, for proving
conjunctions, while ι x .t is for refuting conjunctions. The term
not t switches polarity from proving to refuting, and vice versa.
The term δ x .t·t ′ cuts a positive term t (that is, one which is typable
at positive polarity) against a negative one t′. The remaining two

constructs are for recursion. The term t in rec x [y = t].t ′ is
called the accumulator of the rec-term. It will play a role similar
to accumulator arguments in standard functional programming. It
is initialized to t in rec x [y = t].t ′, and then updated to t′′ in
recursive calls of the form x [t ′′], which may occur in t′. Note that
δ and ι bind x and rec binds x and y. It is not standard to use δ as
the binder in cut terms, but I prefer to reserve µ and ν for inductive
and coinductive types, respectively. We give not higher parsing
precedence than the other operators.

3. Typing

The form of typing judgment for RP-DC is Γ ` t : p T , where
p ∈ {+,−} is a polarity, and Γ is a context, specified by:

contexts Γ ::= . | Γ, x : p T | Γ, x : p X . T

Unlike in DC, we work with a single context, to the left of the
turnstile, and explicitly keep track of polarities p in assumptions
x : p T . Positive polarity means the assumption is true, or compu-
tationally, producing data; while negative polarity means it is false,
or computationally, consuming data. The second form of assump-
tion, x : p X . T , is used for typing recursions (rec-terms). Both
of these are said to declare x. We will see examples in Section 6
below.

In a judgment Γ ` t : p T , if p is + the judgment is affirming
T , and if the judgment holds we say T is proved (in context Γ);
and if p is−, the judgment is denying T , and T is refuted. Also, we
will assume that variables bound in terms are implicitly renamed so
that no context declares the same variable twice, and so that in any
context of the form Γ, x : p X . T ,Γ′, context Γ does not contain
X . We write p̄ for the opposite polarity from p (i.e., the one which
is not p).

The typing rules for RP-DC are given in Figure 1. The AX rule
simply makes use of an assumption from the context, at the as-
sumed polarity. ANDPOS is for proving a conjunction: one must
prove both conjuncts separately. ANDNEG is for refuting a con-
junction, by refuting the first conjunct, under an assumption x that
the second conjunct holds. This single rule is sufficient, since if in
fact we can refute the first conjunct, then we can cut that refutation
against the assumption x, to derive a contradiction (and hence prove
the second conjunct). The NOT rule says that to derive a negation
¬T with polarity p, one must derive T with the opposite polarity
(p̄). The CUT rule says that to derive T with polarity p, it suffices
to assume T with opposite polarity (p̄), and then derive a contra-
diction by separately proving and refuting the same type T ′. The
construct haltT is included to signal the final result of a compu-
tation. Since a priori we allow computations to produce final results
of any type T , we allow haltT to be typed negatively – which can
be thought of as indicating that haltT is an output port – for any
type T . Later (Section 10), we will see how to restrict T to ensure
canonical final results.

The final three rules are for recursive types. The MU rule is a
standard folding rule for recursive types. The MUBAR and REC-
CALL rules work together to type rec-terms. MUBAR and MU
use a helper judgment OccursOnly + X T to express that
the µ-bound variable X only occurs positively in the body T of
µX .T . This judgment is defined in Figure 2. The idea expressed
by MUBAR is that to type rec x [y = t1].t2, we must first assign
some type T ′, with some polarity p, to the accumulator t1. Then we
check that the body t2 of the recursor has type T negatively, in an
extended context. The type T will in general contain the µ-bound
type variable X , so by saying that t2 must have type T , we are

Γ1, x : p T ,Γ2 ` x : p T
AX

Γ ` t1 : +T1 Γ ` t2 : +T2

Γ ` (t1, t2) : +T1 ∧ T2
ANDPOS

Γ, x : +T1 ` t : −T2

Γ ` ι x .t : −T1 ∧ T2
ANDNEG

Γ ` t : p̄ T

Γ ` not t : p ¬T NOT

Γ, x : p̄ T ` t1 : +T ′

Γ, x : p̄ T ` t2 : −T ′

Γ ` δ x .t1·t2 : p T
CUT

Γ ` haltT : −T
HALT

OccursOnly + X T
Γ ` t : + [µX .T/X]T

Γ ` t : +µX .T
MU

OccursOnly + X T
Γ ` t1 : p T ′

Γ, x : p X . T ′, y : p T ′ ` t2 : −T

Γ ` rec x [y = t1].t2 : −µX .T MUBAR

x : p X . T ′ ∈ Γ Γ ` t : p T ′

Γ ` x [t] : −X
RECCALL

Figure 1. Typing rules for RP-DC

OccursOnly + X X
OCCVAR

OccursOnly p X T1

OccursOnly p X T2

OccursOnly p X T1 ∧ T2
OCCAND

OccursOnly p̄ X T

OccursOnly p X ¬T OCCNOT

OccursOnly p X T

OccursOnly p X µX ′.T
OCCMU

Figure 2. Definition of OccursOnly

saying that at certain positions in t2, we must have terms of this un-
known type X . The only way to form such terms is using the term
construct x [t] for recursive calls. This is where the extended con-
text comes into play. MUBAR extends the context with a variable
y : p T ′ referring to the current value of the accumulator, and an
assumption x : p X .T ′. Then in the RECCALL rule, we use such
an assumption to assign type X negatively to a recursive call x [t],
as long as t is again a suitable value for the iterator (i.e., it must
have type T ′ with polarity p). The idea of using type abstraction
(here, the unknown type X) to restrict the form of recursion is due
to Mendler (see Chapter 3 of [14]).

4. Reduction

The reduction judgment for RP-DC is c c′, where c and c′

are configurations of the form p t1 • t2. The intention is to reduce
such a configuration c when t1 has type T positively, and t2 has
type T negatively, for some type T . Thus, a configuration can be
viewed as a (signed) top-level cut, and we call T the cut-type of the
configuration. Note that reduction does not preserve the cut-type in
general: when c c′, the cut-type of c need not be the same c′.

The intention is that to evaluate a term t of type positive T (that
is, a term which has type T with positive polarity), where that term
does not contain any halt term, we will reduce the configuration
+ t • haltT . So haltT is the final continuation for receiving a
result.

We elect to make reduction deterministic, since full non-deterministic
reduction is nonconfluent, due to the well-known peak where t1 and
t2 are both cuts. We use the polarity p ∈ {+,−} to control the re-
duction order of the next reduction step starting from c. The side of
the configuration which the polarity indicates should be reduced to
a value is called the active side of the configuration; the other side
is the passive side. If p is positive, we will not substitute a subterm
of the left part of the configuration unless it is a value. If p is neg-
ative, we impose a similar restriction before substituting subterms
of the right part of the configuration. Reduction will proceed left to
right in the case of pairs (t , t ′). We define the structural terms:

structural s ::= haltT | δ x .t ·t ′
We also use q as a meta-variable for terms which are not structural.
The definition of values v and nonvalues n are given below (Sec-
tion 4.1).

The reduction rules for RP-DC are given in Figure 3, in four groups.
The first two rules in the figure (ANAAND and ANANOT) are called
analysis rules: they break down compound structures that are cut
against each other at the top level. The next five rules (ANDP1,
ANDP2, ANDN, NOTP, and NOTN) we call marshalling rules.
They shift parts of the term from the active side to the passive side,
when the passive side is structural. Marshalling rules reveal cuts
(i.e., δ-terms) which should be reduced first for the active side to
reach a value. The Nonvalue premise in the ANDN rule is defined
in Figure 5, and discussed in detail below (Section 4.1). The next
four rules are δ-rules, specifying how a configuration involving a
cut should be reduced. A value restriction is imposed there: if the
passive side of the configuration is a cut, then the active side must
be a value. Standard capture-avoiding substitution [t/x]t ′ is used
here.

The final rule gives the reduction semantics for the recursor. The
rule makes use of both the usual notion of substitution, and a special
form [t/x]rect

′, defined in Figure 4. The crucial clause of Figure 4
is the last one, which updates the accumulator in a rec-term that is
being substituted. We will see detailed examples of how this works
below (Section 6).

We call a configuration p t1•t2 irreducible iff for all configurations
c, it is not the case that p t1 • t2 c.

4.1 Values and nonvalues

The notion of value v which we require for purposes of canonicity
is somewhat more complex than usual. We inductively define a
relation Nonvalue[θ] t , where θ is either a variable x which
restricts the application of the RAISELA rule, or else !, meaning
no restriction. The definition is in Figure 5. The rules in the figure
which are recursive always refer to a strict subterm of the term in

[t ′/x]rect
′′

[t ′/x]recx ≡ t ′

[t ′/x]recy ≡ y if x 6≡ y
[t ′/x]rec(t1, t2) ≡ ([t ′/x]rect1, [t

′/x]rect2)
[t ′/x]recι y .t ≡ ι y .[t ′/x]rect
[t ′/x]recnot t ≡ not [t ′/x]rect
[t ′/x]recδ y .t1·t2 ≡ δ y .[t ′/x]rect1· [t ′/x]rect2
[t ′/x]recrec x

′[y = t1].t2 ≡ rec x ′[y = [t ′/x]rect1].[t ′/x]rect2
[t ′/x]recy [t] ≡ y [[t ′/x]rect] if x 6≡ y
[rec x [y = t].t ′/x]recx [t ′′] ≡ rec x [y = t ′′].t ′

Figure 4. Special substitution for rec-terms

p (t1, t2) • ι x .t p t1 • δ x .t2·t ANAAND

p not t • not t ′ p̄ t ′ • t ANANOT

+ (n, t) • s + n • δ x .(x , t)·s ANDP1

+ (v ,n) • s + n • δ x .(v , x)·s ANDP2

t = δ z .s·ι x .δ x ′.x ·z
Nonvalue[x] n

− s • ι x .n − (δ z .s·ι x .z) • [t/x]n
ANDN

+ notn • s − δ y .not y ·s • n NOTP

− s • notn + n • δ y .s·not y NOTN

+ (δ y .t1·t2) • t + [t/y]t1 • [t/y]t2
LP

− (δ y .t1·t2) • v − [v/y]t1 • [v/y]t2
LN

+ v • (δ y .t1·t2) + [v/y]t1 • [v/y]t2
RP

− t • (δ y .t1·t2) − [t/y]t1 • [t/y]t2
RN

p q • rec x [y = t1].t2
p q • [rec x [y = t1].t2/x]rec[t1/y]t2

REC

Figure 3. Reduction rules for RP-DC, where v denotes values, n
nonvalues, s structural terms, and q non-structural terms.

the conclusion. So it is decidable whether or not Nonvalue[θ] t
holds, for any t. So we define the set of nonvalues n as those terms
for which Nonvalue[!] n holds, and the set of values v as those for
which Nonvalue[!] v does not hold. A positive characterization of
values should be possible, but working it out is left for future work.
Note that in the CCUT rule, I am writing o as a meta-variable for
constructor terms:

constructor terms o ::= (t1, t2) | ι x .t | not t

Now let us further consider the motivation for the definition of
Nonvalue.

The marshalling rules are responsible for turning nonvalues in the
active part of a configuration into values. On the one hand, we wish
to expose redexes in those nonvalues, to reduce them to values.
But because canonicity fails in RP-DC in general (see Section 10),
we have to be careful to avoid nontermination when performing
marshalling. For example, suppose we have a value v which does
not contain y free. Then it is critical that we judge ι x .δ y .x·not v
to be a value, since otherwise we would get this reduction, where
the first step is by ANDN:

− s • ι x .δ y .x ·not v
− (δ z .s·ι x .z) • δ y .(δ z .s·ι x .δ x ′.x ·z)·not v
− (δ z .s·ι x .δ x ′.x ·z) • not v
− s • ι x .δ x ′.x ·not v

The final configuration is α-equivalent to the first one, so we would
diverge. But with the definition of Figure 5, we will not be able to
derive Nonvalue[!] ι x .δ y .x·not v , because of the restriction in
the RAISELA rule. So we will consider it a value, and hence not
perform any marshalling reduction for it.

A few final notes on values. It may seem strange to define the
recursor as a value. We will certainly use it to consume inductive
data, where it would not matter if we viewed it as a value. But we
can also view the recursor as a finitary representation of coinductive
data, and there we need to view it as a value to avoid unfolding it
infinitely. Also, unlike in DC, we only consider not-term of the
form not v to be values, as opposed (in DC) to not t . This allows
us to give the expected reduction semantics for terms of defined
types like disjunctions and implications (see Section 5 below).

5. Defined Propositional Types

Let us see how propositional types and their term constructs can
be defined in RP-DC, and how the expected typings and reductions
hold for them.

Nonvalue[θ] δ x .o·o′ CCUT

Nonvalue[θ] δ x .(δ y .t1·t2)·t NCUTL

Nonvalue[θ] δ x .t ·(δ y .t1·t2)
NCUTR

x 6∈ FV (t)

Nonvalue[θ] δ x .t ·y RAISER

x 6∈ FV (t)
y 6= y ′

Nonvalue[y] δ x .y ′·t RAISELA

x 6∈ FV (t)

Nonvalue[!] δ x .y ′·t RAISELB

x 6∈ FV (t)

Nonvalue[θ] δ x .t ·haltT HALTR

Nonvalue[!] td
d ∈ {1, 2}

Nonvalue[θ] (t1, t2)
NANDP

Nonvalue[y] t

Nonvalue[θ] ι y .t
NANDN

Nonvalue[!] t

Nonvalue[θ] not t
NNOT

Nonvalue[!] td
d ∈ {1, 2}

Nonvalue[θ] δ x .t1·t2 NCUT

Figure 5. Specifying which terms are nonvalues. The meta-
variable o in CCUT ranges over terms of the form (t1, t2), ι x .t ,
or not t .

5.1 Disjunction

Recall that in Section 2, we defined the type T1∨T2 to be¬(¬T1∧
¬T2). Term constructs for disjunctions can be defined as follows:

in1t := not ι x .δ y .x ·not t
in2t := not ι x .not t
[t , t ′] := not (not t1,not t2)

We assume that variables are renamed to avoid capture, so in
particular, x and y are not free in t in the first two definitions. Those
first two term constructs are called injections, and the last is for co-
pairs. They can be typed with the derivations in Figure 6, where Γ′

abbreviates Γ, x : +¬T1, y : +¬T2. The top-most inference in
the first two derivations is by an admissible weakening rule.

We have the (derived) analytic reductions of Figure 7, to reduce
top-level cuts involving these constructs for disjunction. There are
also marshalling reductions, such as the example shown in Fig-
ure 8. There, we see a situation where we have a nonvalue n for
the body of an injection in1n , where that injection is the active
term of a configuration. Reduction will raise n to be the active term
of the configuration, thus exposing it to reduction before proceed-
ing with a computation involving the injection. There are similar

Γ′ ` x : +¬T1

Γ ` t : +T1

Γ′ ` t : +T1

Γ′ ` not t : −¬T1

Γ, x : +¬T1 ` δ y .x ·not t : −¬T2

Γ ` ι x .δ y .x ·not t : −¬T1 ∧ ¬T2

Γ ` in1t : +T1 ∨ T2

Γ ` t : +T2

Γ, x : +¬T1 ` t : +T2

Γ, x : +¬T1 ` not t : −¬T2

Γ ` ι x .not t : −¬T1 ∧ ¬T2

Γ ` in2t : +T1 ∨ T2

Γ ` t1 : −T1

Γ ` not t1 : +¬T1

Γ ` t2 : −T2

Γ ` not t2 : +¬T2

Γ ` (not t1,not t2) : +¬T1 ∧ ¬T2

Γ ` [t1, t2] : −T1 ∨ T2

Figure 6. Typing derivations for disjunction, where Γ′ abbreviates
Γ, x : +¬T1, y : +¬T2.

+ in1t • [t1, t2] ≡
+ not ι x .δ y .x ·not t • not (not t1,not t2)
− (not t1,not t2) • ι x .δ y .x ·not t
− not t1 • δ x .not t2·δ y .x ·not t
− not t2 • δ y .not t1·not t
− not t1 • not t
+ t • t1

+ in2t • [t1, t2] ≡
+ not ι x .not t • not (not t1,not t2)
− (not t1,not t2) • ι x .not t
− not t1 • δ x .not t2·not t
− not t2 • not t
+ t • t2

Figure 7. Analytic reductions for derived term constructs for dis-
junction

+ in1n • s ≡
+ not ι x .δ y .x ·notn • s
− (δ y ′.not y ′·s) • ι x .δ y .x ·notn
− (δ z .(δ y ′.not y ′·s)·ι x .z)•
δ y .(δ z .(δ y ′.not y ′·s)·ι x .δ x ′.x ·z)·notn
− (δ z .(δ y .not y ·s)·ι x .δ x ′.x ·z) • notn
+ n • (δ z ′.(δ z .(δ y .not y ·s)·ι x .δ x ′.x ·z)·not z ′)

Figure 8. Sample marshalling reduction for injections

marshalling reductions for when the injection is in2n , and when it
is a co-pair (in a configuration with negative polarity).

Finally, we can observe that indv and [v1, v2] are values. In the
case of in1v , for example, we have

not ι x .δ y .x ·not v
We can confirm that this term is syntactically a value (assuming
x 6∈ FV(v)), by reasoning contrapositively with the rules of
Figure 5.

Γ, x : +T1 ` t : +T2

Γ, x : +T1 ` not t : −¬T2

Γ ` ι x .not t : −T1 ∧ ¬T2

Γ ` λx .t : +T1 → T2

Γ ` t1 : +T1

Γ ` t2 : −T2

Γ ` not t2 : +¬T2

Γ ` (t1,not t2) : +T1 ∧ ¬T2

Γ ` 〈t1, t2〉 : −T1 → T2

Figure 9. Typing derivations for implication

+ λx .t • 〈t1, t2〉 ≡
+ not ι x .not t • not (t1,not t2)
− (t1,not t2) • ι x .not t
− t1 • δ x .not t2·not t
− not t2 • not [t1/x]t
+ [t1/x]t • t2

Figure 10. Analytic reduction for implication

5.2 Implication

In Section 2, we defined T1 → T2 to be ¬(T1 ∧ ¬T2). Term
constructs for implication can be defined as follows:

λx .t := not ι x .not t
〈t1, t2〉 := not (t1,not t2)

Figure 9 gives typing derivations for these. Figure 10 gives the
analytic reduction sequence. Notice that we obtain call-by-name
evaluation starting from a positive configuration. Cutting a positive
term of type T → T ′ against a term 〈t1, t2〉 which has that type
negatively can be thought of as supplying both the positive input
argument t1 and the output continuation t2 to the function.

Figure 11 gives an example of a marshalling reduction, where we
pull a substitution instance of the nonvalue body of λx .n out of
that λ-abstraction to the active position of the configuration. So as
in normal-order evaluation for lambda calculus, reduction proceeds
in this case into the body of the λ-abstraction. This is less strange
than might first appear: because rec-terms are values, evaluation in
the body of a recursive function will typically quickly stop, when it
encounters the recursion.

Calling a function is, of course, a basic operation of functional
programming, and it is convenient to define the standard notation
for applications:

t t ′ := δ x .t ·〈t ′, x 〉
To apply a function t of positive type T → T ′ to an argument t′ of
positive type T , we introduce a variable x of negative type T ′, to
hold the output of the function, and then we cut the function against
〈t ′, x 〉.

5.3 Classical principles

We can easily derive the strictly classical principle ¬¬T → T for
any type T :

dne := λx .δ y .x ·notnot y
Here, x has type +¬¬T , and y has type −T . So then notnot y
has type −¬¬T , as required for the cut-term.

+ λx .n • s ≡
+ not ι x .notn • s
− δ y .not y ·s • ι x .notn
− δ y ′.(δ y .not y ·s)·ι x .y ′•
not [δ y ′.(δ y .not y ·s)·ι x .δ y ′′.x ·y ′/x]n

+ [δ y ′.(δ y .not y ·s)·ι x .δ y ′′.x ·y ′/x]n•
δ y ′′.(δ y ′.(δ y .not y ·s)·ι x .y ′)·not y ′′

Figure 11. Sample marshalling reduction for implication

The law of the excluded middle is also easily derivable in RP-DC:

lem := not ι x .not x

This term can be assigned type T ∨ ¬T for any type T , since
unfolding the definition of disjunction we see that type is equal to
¬(¬T ∧¬¬T). Typing lem will assign the type ¬T positively to
x, and so not x has the desired type ¬¬T negatively, as required
to type a ι-term.

It is well known that if disjunction is defined in terms of nega-
tion (as here), the law of excluded middle is intuitionistically valid.
But as pointed out by O’Connor, with that definition, the principle
which is not intuitionistically valid is the usual principle of disjunc-
tion elimination [15]. So to further highlight the classical character
of RP-DC, let us see how to derive that principle in RP-DC. The
following defines a term construct for disjunction elimination:

case t of x .t1, y .t2 := δ z .t ·[δ x .t1·z , δ y .t2·z]

Figure 12 gives the typing derivation for this construct. We are
using our derived co-pairing construct to inhabit the disjunctive
type T1 ∨ T2 negatively.

5.4 False and True

Above we defined⊥ to be µX .X . This can be inhabited negatively
by the term false defined by

false := rec x [y = dne].x [dne]

Then > can be easily inhabited by

true := not false

5.5 Control

As is also done for other CCTTs, we can define a mechanism for
exceptions this way:

catch x t1 t
′
1 t2 := δ y .(δ x .t1·t ′1)·t2

throw t x := δ y .t ·x
This is very similar to what is done in the λµ-calculus; for example,
in [6]. In catch x t1 t

′
1 t2, we declare exception x, which can be

thrown inside the cut of t1 against t ′1. The exception will be handled
in t2. The term throw t x can be thought of as throwing t on
named exception-channel x. For a small example of these in action,
consider the term

catch x (λy .y) 〈throw t x , t ′′〉 t2
The idea here is that we want to call the identity function λy .y . On
normal execution we will send the result to t ′′, but if the exception
on x is raised (as it will be), it should be handled by t2. Unfolding
some definitions, this term is equal to

δ y .(δ x .(λy .y)·〈δ z .t ·x , t ′′〉)·t2
To run this term, let us suppose we are cutting it against haltT .
See Figure 13 for the reduction, where t′2 abbreviates [haltT/y]t2.

Γ′ ` t : +T1 ∨ T2

Γ, x : +T1 ` t1 : +T ′

Γ1 ` t1 : +T ′ Γ1 ` z : −T ′

Γ′ ` δ x .t1·z : −T1

Γ, y : +T2 ` t2 : +T ′

Γ2 ` t2 : +T ′ Γ2 ` z : −T ′

Γ′ ` δ y .t2·z : −T2

Γ′ ` [δ x .t1·z , δ y .t2·z] : −T1 ∨ T2

Γ ` case t of x .t1, y .t2 : +T ′

Figure 12. Typing derivation for the derived disjunction elimination, where Γ′ abbreviates Γ, z : −T ′, Γ1 abbreviates Γ′, x : +T1, and Γ2

abbreviates Γ′, y : +T2.

+ δ y .(δ x .(λy .y)·〈δ z .t ·x , t ′′〉)·t2 • haltT
+ (δ x .(λy .y)·〈δ z .t ·x , t ′′〉) • t ′2
+ (λy .y) • 〈δ z .t ·t ′2, t ′′〉 ∗
+ δ z .t ·t ′2 • t ′′
+ t • t ′2

Figure 13. Reduction illustrating the behavior of defined excep-
tions

Besides exceptions, we can easily mimic the control operator
call/cc: it is a trivial matter to capture the passive part of a
configuration by using a cut-term for the active part. It is not so
clear, however, that delimited control can be implemented directly
in RP-DC. This is because a cut-term like δ x .t1 · t2, if used pos-
itively, introduces a name x for the entire rest of the computation
(the entire passive part of the configuration). Capturing the contin-
utation of a term only up to some delimiting point, in contrast, is
not obviously implementable.

6. Examples with Recursion

Let us now consider how to implement standard inductive types
in RP-DC, specifically unary natural numbers and lists. A full-
fledged type theory based on RP-DC would include some form
of polymorphism, but for simplicity we are focused here just on
a monomorphic language. So we will just consider monomorphic
lists, and rely on parametrized meta-level definitions to describe
lists and list operations for different types of data. We make these
standard definitions:

L A := µX .> ∨ (A ∧X)
N := L >

L A is the type for homogeneous lists of elements of type A. We
are using the well-known fact that one can define unary numbers as
lists containing just a single unit value, here true. We can define
constructors for lists:

nil := in1true
cons := λx .λy .in2(x , y)

These can be typed as LA andA→ LA→ LA, respectively. Let
us also define this notation (familiar from Haskell, for example) for
lists of length n ≥ 0:

[t1, . . . , tn] := in2 (t1, . . . in2 (tn, in1true))

Note that [v1, ... , vk] is a syntactic value (as it would not be if we
defined it using cons and nil). The numerals, which we will use
with standard decimal notation below, can be constructed by:

Z := nil
Suc := λx .cons true x

+ append [1, 2] [3] • haltL N ∗
+ in2(1, [2])•
rec f [z = haltL N].
(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z])

+ in2(1, [2])•
(δ y ′.[3]·haltL N,
ι a.rec f [z = δ y ′.cons a y ′·haltL N].
(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z])) ∗

+ (1, [2])•
ι a.rec f [z = δ y ′.cons a y ′·haltL N].
(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z]) ∗

+ in2(2,nil)•
rec f [z = δ y ′.cons 1 y ′·haltL N].
(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z]) ∗

+ in2(2,nil)•
(δ y ′.[3]·δ y ′.cons 1 y ′·haltL N,
ι a.rec f [z = δ y ′.cons a y ′·δ y ′.cons 1 y ′·
haltL N].

(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z])) ∗

+ nil•
rec f [z = δ y ′.cons 2 y ′·δ y ′.cons 1 y ′·
haltL N].

(δ y ′.[3]·z , ι a.f [δ y ′.cons a y ′·z]) ∗

+ in1true•
(δ y ′.[3]·δ y ′.cons 2 y ′·δ y ′.cons 1 y ′·
haltL N, . . .) ∗

+ [3] • δ y ′.cons 2 y ′·δ y ′.cons 1 y ′·
haltL N ∗

+ cons 2 [3] • δ y ′.cons 1 y ′·haltL N ∗
+ [2, 3] • δ y ′.cons 1 y ′·haltL N ∗
+ cons 1 [2, 3] • haltL N ∗
+ [1, 2, 3] • haltL N

Figure 14. Normalizing evaluation of append on input lists [1, 2]
and [3]

With natural numbers defined this way, addition is just list append,
so we will focus on defining this function for an example:

append :=
λx .λy .δ r .x·
rec f [z = r].
(δ y ′.y ·z , ι a.f [δ y ′.cons a y ′·z])

To see how this works, consider the reduction sequence in Fig-
ure 14, where we unfold definitions implicitly for conciseness. At
each recursive call, we are extending the negative list in the accu-
mulator of the rec-term so that when it is cut against a positive list
L, it will add the elements from the first input list ([1, 2]) in the
correct order to L. In the base case, we supply the second input list
([3]) for L, and so get the desired final result.

7. Corecursion

Now let us see how to operate on coinductively defined data in RP-
DC. Recall the definition of coinductive types from Section 2:

ν X .T := ¬µX .¬[¬X /X]T

First, let us consider this definition from the perspective of positiv-
ity. We only wish to allow coinductive types ν X .T whenX occurs
positively in T . Since our definition of this coinductive type begins
¬µX.¬, the type ¬µX .¬T would not satisfy, in general, the re-
quirement on inductive types that the µ-bound variable X must
occur only positively in the body (since we are assuming X occurs
only positively in T , but T occurs negatively in ¬µX .¬T). It is
for this reason that we take ¬µX .¬[¬X /X]T as the definition of
ν X .T , since substituting ¬X for X in T ensures that the posi-
tivity constraint on the µ-type is satisfied. As already noted, this is
standard in propositional µ-calculus [12].

Based on this definition of ν-types, we can see that the natural
term construct for co-recursion is the following, where we write
[¬f /f]t2 for the term which is exactly like t2 except that wherever
t2 has f [t], [¬f /f]t2 has not f [t]:

corec f [z = t1].t2 := not rec f [z = t1].not [¬f /f]t2

The typing derivation for this term is shown in Figure 15. The effect
of the substitution of ¬f for f in the body t2 is that whenever t2
makes a corecursive call f [t], this expands to not f [t]. Since a
recursive call f [t] has type negativeX (according to the RECCALL
rule of Figure 1), the corecursive call not f [t] will instead have
type positive ¬X .

Let us see an example now of these definitions in action. Streams
are a canonical example of a coinductive type:

S A := ν X .A ∧X

Expanding the definition of ν-types, we see we have:

S A = ¬µX .¬(A ∧ ¬X)

We can get the head and tail of a stream as follows:

head := λx .δ y .x ·not (δ x ′.(not ι y ′.δ z .y ′·y)·x ′)
tail := λx .δ y .x ·not (δ x ′.(not ι y ′.y)·x ′)

The first has positive type S A → A, and the second S A → S A.
For example, tail takes in x of positive type S A, and immediately
does a cut introducing variable y negatively of type S A. We want
to unfold the type of x from S A to ¬¬(A ∧ S A), but there are
two problems: the MU typing rule can only be applied for folding,
and it must be applied to a term of positive type ¬(A ∧ S A).
We can solve both problems by cutting x against the term which
begins with not, and then does a cut introducing x′ of negative
type µX .¬(A ∧ ¬X). We are cutting that x′ against not ι y ′.y .
The latter term has type ¬(A ∧ S A) positively, and by the MU
typing rule, can also be assigned type µX .¬(A∧¬X), as required.

Let us consider some standard basic examples of computing
streams. The following term has positive type A → S A for any
type A, and given x of type A, returns the infinite stream of x’s:

repeat := λx .corec f [z = true].(x , f [true])

Expanding the definition of corec, repeat is

λx .not rec f [z = true].not (x ,not f [true])

The accumulator z is not used here, so we just supply a trivial value
true for it. To see that this indeed returns an infinite stream of 3s,
for example, when called with 3, we can select an element from
the result by cutting that result against a term of type negative S N.
This is shown in Figure 16, where we assume z is a term of negative

+ head (tail (repeat 3)) • z ∗
+ repeat 3•
notnot ι x .notnot ι y .δ x ′.y ·z ∗
− not ι x .notnot ι y .δ x ′.y ·z•
rec f [z = true].not (3,not f [true])
− not ι x .notnot ι y .δ x ′.y ·z•
not (3,not rec f [z = true].not (3,not f [true]))

+ (3,not rec f [z = true].not (3,not f [true]))•
ι x .notnot ι y .δ x ′.y ·z

+ not rec f [z = true].not (3,not f [true])•
notnot ι y .δ x ′.y ·z
− not ι y .δ x ′.y ·z•
rec f [z = true].not (3,not f [true])
− not ι y .δ x ′.y ·z•
not (3,not rec f [z = true].
not (3,not f [true]))

+ (3,not rec f [z = true].not (3,not f [true]))•
ι y .δ x ′.y ·z

+ not rec f [z = true].not (3,not f [true])•
δ x ′.3·z

+ 3 • z

Figure 16. Selecting the second element (i.e., 3) from repeat 3,
where we assume z : −N.

type N. It receives the second element from the stream of 3s, when
that element has been selected.

Using an accumulator, it is easy to define a stream consisting of the
natural numbers beginning from some point n, another standard
basic example:

nats := λn.corec f [x = n].(n, f [Suc n])

This term has positive type N → S N. Selecting an element from
a stream like that resulting from nats 0 works similarly to the
example of Figure 16.

For a final example, let us consider mapping a function f over a
stream x:

map := λf .λx .corec h[y = x].(f (head y), h[tail y])

The type of this term is the expected (A → B) → (S A → S B).
Here we apply the head and tail functions above to inspect and
modify the accumulator y, of positive type S A.

8. Mixed Recursion/Corecursion

One of the motivations for recent works on type theories with in-
duction and coinduction is to support mixed inductive/coinductive
types, along with mixed recursion/corecursion. The current version
of Agda, for example, supports mixed inductive/coinductive types
only in the limited form νX.µY.T . The reverse prefix µX.νY can-
not be defined [1, 2]. Here we give two simple examples showing
how RP-DC can support mixed inductive/coinductive types with
either prefix.

8.1 The prefix νX.µY

The example is finitely branching trees where every branch is
infinitely deep. The type of such trees is:

I := ν X .µY .(X ∧Y) ∨ >

OccursOnly + X ¬[¬X /X]T Γ ` t1 : p T ′
Γ, f : p X . T ′, z : p T ′ ` [¬f /f]t2 : + [¬X /X]T

Γ, f : p X . T ′, z : p T ′ ` not [¬f /f]t2 : −¬[¬X /X]T

Γ ` rec f [z = t1].not [¬f /f]t2 : −µX .¬[¬X /X]T

Γ ` corec f [z = t1].t2 : + ν X .T

Figure 15. Typing derivation for corecursion

Expanding the definition of ν-types, we have

I = ¬µX .¬µY .(¬X ∧Y) ∨ >

For an example, let us construct a function of type N → I, which
will return an element of type I where every node in the tree has
branching degree n, when called with input n of positive type N.
The code for this is not long, but will require some explanation:

tr :=
λn.corec f [z = true].
δ r .n·
rec g [y = in2true].

[(true, g [in1(cons f [true] y)]),
δ z ′.y ·r]

The basic idea is that we have an outer corecursion with an inner
recursion, where the inner recursion is analyzing the input n to
generate the finite branching at the current node of the tree. Let
us see that this term tr has positive type N → I. First note that
we are not using the accumulator for corecursive function f , and
so we are just supplying true as a dummy value (where we have
z = true and f [true]). To type the term we use these typings for
bound variables:

n : +N
f : +X .>
r : −µY .(¬X ∧Y) ∨ >
g : +Y . µY .(¬X ∧Y) ∨ >
y : +µY .(¬X ∧Y) ∨ >
z′ : +>

The key idea is that we are using a positive accumulator of type
µY .(¬X ∧ Y) ∨ > in the inner recursion, to accumulate the list
of branches at the current node of the tree. When we reach the base
case of the recursion (for when n is 0), we return the accumulated
branches, by cutting them against the negative variable r. This is
the term δ z ′.y·r . The inner recursion has type µY .(>∧Y)∨>
negatively, since we are cutting it against n of positive type N (α-
equivalent to µY .(> ∧ Y) ∨ >). This means that the body of the
inner recursion is required to have negative type (> ∧ Y) ∨ >. So
we take a co-pair for the body of the inner recursion, since co-pairs
inhabit disjunctive types negatively.

Suppose we inspect the term tr 3 by evaluating a configuration
+ tr 3 • notnot t , where t has negative type µY .(I ∧ Y) ∨ >.
The effect of this will be to substitute t for r in the code for tr,
then recursively compute (by the inner recursion) the list of three
branches of the tree, and finally (in the base case) pass this list
to t by cutting it the list against t. The reader carefully following
this explanation may be puzzled by the described substitution of
t for r, since the type for t is −I, while the type I listed above
for r is −µY .(¬X ∧ Y) ∨ >. The solution is that when RECN
pushes in the outer corecursion, the type for r will change from
−µY .(¬X ∧Y) ∨ > to the type −µY .(I ∧Y) ∨ > of t.

8.2 The prefix µX.νY

The type of possibly infinitely branching trees where all branches
are of finite depth has the same definition as the previous example,

except with the prefix reversed:

J := µX .ν Y .(X ∧Y) ∨ >

We view descent down the side of the tree corresponding to X in
the definition as entering a (finite-depth) branch, and descent down
the side corresponding to Y to be proceeding to the next branch at
the current node. Let us construct a function which given n of type
N, returns the element of J where all nodes are infinitely branching,
and all branches have depth n:

trj :=
λn.δ r .n·
rec f [y = notnot in2true].

(δ y ′.y ·r ,
f [corec g [z = true].in1(y , g [true])])

This can be assigned type N → J with these typings for bound
variables:

n : +N
r : −J
f : +X . J
g : +Y .>

The outer recursion is using accumulator y of type J to construct
the desired tree. In the base case (where we have δ y ′.y·r , with the
initial value notnot in2true for y), the accumulator is just the
empty tree. In the step case, we make a recursive call to f , updat-
ing the accumulator with the infinite list of branches, where each
branch goes to a tree given by the current value of the accumulator
(this is accomplished with the pair (y , g [true])). The MU typing
rule is used when typing the accumulator values.

9. Logical Consistency

A type theory is logically consistent iff there is some type which
is not inhabited in the empty context. We can establish logical
consistency by viewing the type theory as a logic (via the Curry-
Howard isomorphism), and showing that there is some formula
which is not provable in the logic. This is very easy to do in the
case of RP-DC, since the corresponding logic is quite weak, just
a fragment of propositional µ-calculus [12]. Because we intend
haltT to be used only at the top-level in an initial configuration (to
receive a final result), we consider only terms which do not contain
halt-subterms:

Theorem 1 (Logical Consistency of RP-DC). The type T ∧¬T is
not inhabited by any halt-free term in the empty context, for any
type T .

Proof. A very easy way to prove this is first to define a simple
boolean semantics of formulas. We define an interpretation JT Kρ of
type T as a boolean value (we use true and false for these here, at
the risk of some confusion with the term constructs we defined for
types> and⊥). The interpretation is with respect to an assignment

ρ mapping all the type variables X in T to boolean values.

JXKρ = ρ(X)
JT1 ∧ T2Kρ = JT1Kρ ∧ JT2Kρ
J¬T Kρ = ¬JT Kρ

JµX .T Kρ =

{
false, if ¬JT K(ρ[X 7→ false])
true, otherwise

The idea in the clause for µ-types is to take JµX .T Kρ to be a
least fixed point in the boolean domain, where false is considered
smaller than true. So if JT K(ρ[X 7→ false]) is false, we have
found a fixed point and return that as the value for JµX .T Kρ.
Otherwise, JT K(ρ[X 7→ false]) is true, and so monotonicity will
ensure that true is the fixed point – although we do not need to
prove monotonicity here, since it will be addressed when we prove
soundness of the MU rule below.

Next, let us define a lifting operation p−q to map contexts and
sequents to types (making use of the defined types for truth and
implication). Let us write pT as notation for T if p = + and ¬T if
p = −.

p.q = >
pΓ, x : p Tq = pΓq ∧ pT
pΓ, x : p X . Tq = pΓq ∧ ¬X

pΓ ` t : p Tq = pΓq → pT

We will now prove soundness of RP-DC typing with respect to
this semantics, for terms that do not contain haltT : whenever
Γ ` t : p T is derivable and t does not contain any subterm of the
form haltT ′, then JpΓ ` t : p TqKρ is true, for all assignments
ρ to the free type variables of pΓ ` t : p Tq. This is sufficient for
proving that T ∧ ¬T is uninhabited by halt-free terms, since we
can easily note that JT∧¬T Kρ is false for any assignment ρ, and so
soundness implies we cannot possibly derive . ` t : +T ∧ ¬T if
the HALT typing rule is not used. We prove soundness by induction
on the structure of the derivation of Γ ` t : p T . All cases are very
easy, so let us just consider one:

Case:
OccursOnly + X T
Γ ` t : + [µX .T/X]T

Γ ` t : +µX .T
MU

By the induction hypothesis and basic boolean reasoning, it suffices
to assume that J[µX .T/X]T Kρ is true, and prove that JµX .T Kρ
is also true. For this, it suffices to prove that for any T ′, either the
value of JT ′Kρ[X 7→ true] is the same as JT ′Kρ[X 7→ false]; or
else the value of JT ′K(ρ[X 7→ b]) is b if X occurs only positively
in T ′, and b̄ (the negation of b) if it occurs only negatively. We omit
this easy argument. Also, we can easily show the standard lemma
that

J[T ′/X]T Kρ = JT K(ρ[X 7→ JT ′Kρ])

Putting these pieces together: we know that

J[µX .T/X]T Kρ = JT K(ρ[X 7→ JµX .T Kρ])

It could be that the interpretation of T does not depend on the
interpretation of X , and then we have that JT K(ρ[X 7→ false])
is true, and so by the semantics for µ-types, so is JµX .T Kρ.
Otherwise, since X occurs only positively in T by the first premise
of the inference, if JµX .T Kρ is false, then so is

J[µX .T/X]T Kρ

but we are assuming this is true.

Canon t1 : +T1

Canon t2 : +T2

Canon (t1, t2) : +T1 ∧ T2
CANANDP

Canon t : −T1

Canon ι x .δ y .x ·t : −T1 ∧ T2
CANANDN1

Canon t : −T2

Canon ι x .t : −T1 ∧ T2
CANANDN2

OccursOnly + X T
Canon t : + [µX .T/X]T

Canon t : +µX .T
CANMU

. ` rec x [y = t].t ′ : − ⊥
Canon rec x [y = t].t ′ : − ⊥ CANFALSE

CanonhaltT : −T
CANHALT

Figure 17. Canonical inhabitation

10. Canonicity

Classical reasoning is supposed to be nonconstructive, and hence
noncomputational. Despite the fact that we have a reduction seman-
tics for RP-DC, one might reasonably be concerned that it could fail
to be suitable for programming. But languages with control opera-
tors are used heavily for practical programming. So what makes a
computational classical type theory (CCTT) nonconstructive?

The answer is the failure, in general, of canonicity. For program-
ming languages, we usually expect that closed normal forms of
type T will be canonical: they will be built by constructors from
canonical subdata. For example, if we have a closed normal form
of type N ∨ L N, we expect that it is either the left injection of
a canonical natural number, or the right injection of a canonical
list of natural numbers. In CCTTs, canonicity fails for types like
T ∨ ¬T . In Section 5.3 we saw that a closed normal form of this
type is not ι x .not x . This is not the encoding of a left injection of
a value of type T or the right injection of a value of type ¬T . Re-
call from Section 5.1 that the encodings of these are the following,
where x and y are assumed not to be free in t:

in1t := not ι x .δ y .x ·not t
in2t := not ι x .not t

The term not ι x .not x does not match the right hand side of the
second defining equation, because such a match would take x for t
– but t is required not to contain x free.

As we would expect from the practical application of programming
languages with control operators, this failure of canonicity in gen-
eral does not render a CCTT like RP-DC unusable for program-
ming. For there are types where the closed normal forms are indeed
of the expected canonical shape. Figure 17 defines one notion (oth-
ers are surely possible) of what it means for a term to be canonical
of particular positive and negative types. The CANFALSE rule gives
us a base case for the inductive definition.

Let us define positive canonical types S and negative canonical
types R as follows, where we additionally require that S is not just
X in the case of µX .S :

positive canonical S ::= X | S ∧ S ′ | ¬R |
µX .S

negative canonical R ::= R ∧ R′ | ¬S | ⊥

We do not intend to observe coinductive values directly, so we
do not include ν-types in the definition of R. The following can
then be proved by induction on the type in question (noting that ⊥,
which is defined to be µX .X , is not positive canonical):
Lemma 2. No positive canonical type S is also negative canon-
ical, and similarly no negative canonical type R is also positive
canonical.

We can also easily prove:
Lemma 3. If Canon t : p T then t is closed.

Using these lemmas, we obtain the following main result:

Theorem 4 (Canonicity). Suppose that t is a value; that is,
Nonvalue[!] t is not derivable. Suppose also that the only halt-
subterms it contains are of the form haltS ′. Finally, suppose that
every declaration in Γ is either of the form x : −S1 or x : +R1.
Then if Γ ` t : +S , we have Canon t : +S , and if Γ ` t : −R,
we have Canon t : −R.

Proof. The proof is by induction on the structure of the assumed
typing derivation.

Case:

Γ1, x : +S ,Γ2 ` x : +S

This case is impossible because of the assumption about the form
of declarations in Γ, using Lemma 2 to conclude that none of our
assumptions x : +R (allowed in Γ) is also an assumption of the
form x : +S . Similar reasoning shows the following case is also
impossible:

Γ1, x : −R,Γ2 ` x : −R

Case:

Γ, x : −S ` t1 : +T ′ Γ, x : −S ` t2 : −T ′

Γ ` δ x .t1·t2 : +S

Because t is a value, it must be of one of the forms δ x .t ′ · y ,
δ x .y · t ′, or δ x .t ′ ·haltS ′, with x ∈ FV(t′) and t ′ a value
(since otherwise the NCUT rule applies). Let us break these cases
out in turn.

Subcase:

Γ, x : −S ` t1 : +T ′ Γ, x : −S ` y : −T ′

Γ ` δ x .t1·y : +S

Because of the assumption about the form of declarations in Γ,
from the second premise, we can conclude that T ′ is of the form
S′, for some positive canonical type S′. So the inference we are
considering is really of the form:

Γ, x : −S ` t1 : +S ′ Γ, x : −S ` y : −S ′

Γ ` δ x .t1·y : +S

Now we may apply our induction hypothesis to conclude Canon t1 :
+S ′. By Lemma 3, this implies that t1 is closed, contradicting
x ∈ FV(t1).

Subcase:

Γ, x : −S ` y : +T ′ Γ, x : −S ` t1 : −T ′

Γ ` δ x .y ·t1 : +S

Similar reasoning as in the previous subcase applies, to show that
our inference is really of the form:

Γ, x : −S ` y : +R′ Γ, x : −S ` t1 : −R′

Γ ` δ x .y ·t1 : +S

So we may apply our IH to the second premise, to contradict
x ∈ FV(t1).

Subcase:

Γ, x : −S ` t1 : +S ′ Γ, x : −S ` haltS ′ : −S ′

Γ ` δ x .t1·haltS ′ : +S

This is similar to the first subcase, and we again apply our IH to the
first premise, to contradict x ∈ FV(t1).

Case:

Γ, x : +R ` t1 : +T ′ Γ, x : +R ` t2 : −T ′

Γ ` δ x .t1·t2 : −R

This case proceeds similarly to the previous one: because t is a
value, it must be of one of the forms δ x .t ′ · y , δ x .y · t ′, or
δ x .t ′·haltS ′, with x ∈ FV(t′) and t′ a value. All the subcases
proceed just as above, with the only difference being that we have
added an assumption x : +R to the context, instead of one of the
form x : −S . But our restriction on the form of the context is
satisfied either way.

Case:
Γ, x : +R1 ` t1 : −R2

Γ ` ι x .t1 : −R1 ∧ R2

There are several subcases we must consider, based on our assump-
tion that t is a value. Reasoning contrapositively with the rules of
Figure 5, it could be that t is of the form ι x .δ y .y ′·t ′1, where either
y = x or else y 6= x and y ∈ FV(t ′1), and t ′1 is a value; or else it is
of the form ι x .t where t is a value that is not of the form δ y .x·t ′1.
Let us consider these subcases in turn:

Subcase:
Γ′ ` x : +R1 Γ′ ` t ′1 : −R1

Γ, x : +R1 ` δ y .x ·t ′1 : −R2

Γ ` ι x .δ y .x ·t ′1 : −R1 ∧ R2

Here, I am abbreviating Γ, x : +R1, y : +R2 as Γ′. We may apply
our IH to the second premise to conclude that Canon t1 : −R1,
which is now enough to apply the CANANDN1 rule to conclude
Canon ι x .δ y .x ·t ′1 : −R1 ∧ R2.

Subcase:
Γ′ ` y ′ : +R′ Γ′ ` t ′1 : −R′

Γ, x : +R1 ` δ y .y ′·t1 : −R2

Γ ` ι x .δ y .y ′·t ′1 : −R1 ∧ R2

Again abbreviate Γ, x : +R1, y : +R2 as Γ′. We may apply our
IH to the second premise to conclude Canon t ′1 : −R′, which
contradicts the assumption that x ∈ FV(t ′1).

Subcase:
Γ, x : +R1 ` t1 : −R2

Γ ` ι x .t1 : −R1 ∧ R2

This is the subcase where t1 is not of one of the forms of the
previous two subcases. Because of the fact that all the rules of
Figure 5 which could still apply have ! for θ in their premises
(and allow any θ in their conclusion), we can easily prove that t1

is a value. So we may apply our IH and then the ANDN2 rule
to conclude Canon ι x .t1 : −R1 ∧ R2. The case for positive
conjunctions is easy, so we omit it.

Case:
Γ ` t : −R

Γ ` not t : +¬R
We may apply the IH and then CANNOT. The case for Γ ` not t :
−¬S is similar.

Case:

Γ ` t1 : p T ′ Γ, x : p X . T ′, y : p T ′ ` t2 : −X

Γ ` rec x [y = t1].t2 : − ⊥
We may apply the CANFALSE rule to obtain the desired conclusion.

Case:

OccursOnly + X S Γ ` t : + [µX .S/X]S

Γ ` t : +µX .S

We need only observe that [µX .S/X]S is still positive canonical,
assuming X occurs only positively in S. So we may apply our IH
and then the CANMU rule to obtain the desired result.

This theorem shows that final answers of positive canonical type S
are indeed canonical values. So RP-DC can be used for practical
programming, because for such types S, we can obtain an answer
of the expected practical form. And note that this result includes
types S corresponding to the general sums of products form for
standard algebraic datatypes, because S ∨ S ′ is ¬(¬S ∧ ¬S ′),
which is indeed positive canonical. So any RP-DC program which
computes a final answer of type S is guaranteed to produce a
canonical output.

11. Conclusion and Future Work

This paper has introduced the Recursive Polarized Dual Calcu-
lus (RP-DC), a development of Wadler’s Dual Calculus with in-
ductive types and recursion. Thanks to a polarized reduction rela-
tion, standard propositional types may be defined from the minimal
set of conjunction and negation, with the expected reductions and
typings. We saw several practical examples of programming with
recursion, corecursion, and mixed recursion/corecursion. Finally,
two significant metatheorems were established: logical consistency
(Theorem 1), and canonicity (Theorem 4). Future work includes
development of more metatheoretic results, in particular, the stan-
dard results of type preservation and normalization. Type preserva-
tion is likely straightforward, but I expect normalization to be much
more involved. Fortunately, a wonderful tool for this has recently
been developed by Krivine: classical realizability [13]. Other future
work includes implementation, and extension to dependent types.
For the latter, our term construct ι x .t should pave the way for de-
pendent typing with a rule like the following, where x : T ∧ T ′

binds x in T ′:
Γ, x : +T ` t : −T ′

Γ ` ι x .t : − x : T ∧ T ′

It would also be interesting to explore new functional-programming
idioms for computing with negative data.

Acknowledgments. Thanks to Harley Eades III for many discus-
sions on computational classical type theories. Thanks also to Phil

Wadler for discussing DC. Thanks to the anonymous PLPV ’14
reviewers for their detailed and very helpful criticism. This work
was supported by the National Science Foundation (NSF grant
0910500). The inference systems were typeset with the help of
Ott [17].

References
[1] Andreas M. Abel and Brigitte Pientka. Wellfounded recursion with

copatterns: a unified approach to termination and productivity. In
Tarmo Uustalu, editor, Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), pages 185–
196. ACM, 2013.

[2] Thorsten Altenkirch and Nils Anders Danielsson. Termination Check-
ing Nested Inductive and Coinductive Types. Short note supporting a
talk given at PAR 2010, Workshop on Partiality and Recursion in In-
teractive Theorem Provers. Available from the authors’ web pages.

[3] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[4] Robert Atkey and Conor McBride. Productive coprogramming with
guarded recursion. In Tarmo Uustalu, editor, Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), pages 197–208. ACM, 2013.

[5] Marc Bezem, Keiko Nakata, and Tarmo Uustalu. On streams that are
finitely red. Logical Methods in Computer Science, 8(4), 2012.

[6] Tristan Crolard. A confluent lambda-calculus with a catch/throw
mechanism. J. Funct. Program., 9(6):625–647, 1999.

[7] Pierre Curien and Hugo Herbelin. The duality of computation. In
Proceedings of the fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 233–243. ACM, 2000.

[8] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and
Functional Programming, pages 151–160, 1990.

[9] Matthias Felleisen. The theory and practice of first-class prompts. In
Jeanne Ferrante and P. Mager, editors, Fifteenth Annual ACM Sympo-
sium on Principles of Programming Languages (POPL), San Diego,
California, USA, January 10-13, 1988, pages 180–190, 1988.

[10] Timothy Griffin. A Formulae-as-Types Notion of Control. In
Frances E. Allen, editor, Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages (POPL),
pages 47–58. ACM Press, 1990.

[11] Daisuke Kimura and Makoto Tatsuta. Call-by-value and call-by-name
dual calculi with inductive and coinductive types. Logical Methods in
Computer Science, 9(1), 2013.

[12] Dexter Kozen. Results on the propositional µ-calculus . Theoretical
Computer Science, 27(3):333 – 354, 1983.

[13] Jean-Louis Krivine. Realizability in classical logic. Panoramas et
synthèses, 27:197–229, 2009. Interactive models of computation and
program behaviour. Société Mathématique de France.

[14] Paul Francis Mendler. Inductive Definition in Type The-
ory. PhD thesis, Cornell University, 1988. Available at
http://www.nuprl.org/documents/Mendler/InductiveDefinition.html.

[15] Russell O’Connor. Classical mathematics for a constructive world.
Mathematical Structures in Computer Science, 21(4):861–882, 2011.

[16] Michel Parigot. Lambda-Mu-Calculus: An algorithmic interpretation
of classical natural deduction. In Andrei Voronkov, editor, Logic
Programming and Automated Reasoning, pages 190–201, 1992.

[17] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strnisa. Ott: Effective tool
support for the working semanticist. J. Funct. Program., 20(1):71–
122, 2010.

[18] Philip Wadler. Call-by-Value Is Dual to Call-by-Name – Reloaded.
In Jürgen Giesl, editor, Rewriting Techniques and Applications (RTA),
Lecture Notes in Computer Science, pages 185–203. Springer, 2005.

	Introduction
	Syntax of RP-DC
	Typing
	Reduction
	Values and nonvalues

	Defined Propositional Types
	Disjunction
	Implication
	Classical principles
	False and True
	Control

	Examples with Recursion
	Corecursion
	Mixed Recursion/Corecursion
	The prefix X. Y
	The prefix X. Y

	Logical Consistency
	Canonicity
	Conclusion and Future Work

