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Abstract. This paper shows how a recently developed view of typing as small-step ab-
stract reduction, due to Kuan, MacQueen, and Findler, can be used to recast the de-
velopment of simple type theory from a rewriting perspective. We show how standard
meta-theoretic results can be proved in a completely new way, using the rewriting view
of simple typing. These meta-theoretic results include standard type preservation and
progress properties for simply typed lambda calculus, as well as generalized versions where
typing is taken to include both abstract and concrete reduction. We show how automated
analysis tools developed in the term-rewriting community can be used to help automate
the proofs for this meta-theory. Finally, we show how to adapt a standard proof of nor-
malization of simply typed lambda calculus, for the rewriting approach to typing.

1. Introduction

This paper develops a significant part of the theory of simple types based on a recently
introduced rewriting approach to typing. The idea of viewing typing as a small-step abstract
reduction relation was proposed by Kuan, MacQueen, and Findler in 2007, and explored
also by Ellison, Şerbănuţă, and Roşu [13, 9, 14]. These works sought to use rewrite systems
to specify typing in a finer-grained way than usual type systems. Our motivation is more
foundational: we seek to prove standard meta-theoretic properties of type systems directly,
based on the rewriting formulation. The goal is to develop new methods which could
provide a different perspective on familiar type systems, and perhaps yield new results for
more advanced type systems.
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Our focus in this paper is simple type systems, where the central typing construct is
the function type T ⇒ T ′. We will view such types as abstractions of functions, and in-
crementally rewrite (typable) functions to such function types, using an abstract small-step
reduction relation. It will be straightforward to prove the standard property of type safety,
based on type preservation and progress, using this rewriting formulation. This viewpoint
also allows us to combine the usual concrete reduction relation and our new abstract reduc-
tion relation together, simply by taking their set-theoretic union. We will prove that this
combined reduction relation is confluent for typable terms, defined as terms which reduce,
using abstract steps, to a type. To prove both type preservation and confluence we use
observations developed in the context of abstract reduction systems. We then develop our
final main result, which is a proof of normalization for the simply typed lambda calculus,
based on the rewriting approach. This proof has several novel features, which shed new
light on the reducibility semantics of types used in standard proofs of normalization.

This paper expands in several important ways on a previous paper of Stump, Kimmell,
and El Haj Omar, which was presented at RTA 2011 [20]:

• We use the rewriting method to prove type preservation for full β-reduction; the
RTA ’11 paper showed it only for call-by-value computation.
• We prove preservation for a new notion we call generalized typing, where concrete
and abstract reduction steps can be intermixed. This generalizes the so-called direct

computation rules of the well-known NuPRL system [2].
• We correct an error in the RTA ’11 paper, where we claimed that type preservation
is a corollary of confluence for typable terms. In fact, confluence is a straightforward
corollary of type preservation.
• We have shown how a standard proof of normalization for simply typable terms is
adapted to the rewriting approach to typing. This adaptation reveals an interesting
perspective on types as abstractions of terms.
• Due to the amount of new material, we have dropped the treatment of several
variants of STLC, which are studied in the RTA paper.

As Zantema had a substantial contribution to these extensions, he was added as an author.
The remainder of the article is organized as follows. Section 2 provides a brief in-

troduction to abstract reduction systems as used later in the paper. Section 3 gives a
standard presentation of the simply typed lambda calculus along with the fundamental
meta-theoretic properties. Section 4 recasts the simply typed lambda calculus static and
operational semantics within the framework of abstract reduction systems. Section 5 gives
some abstract reduction theory to be used in Section 6 where type preservation and con-
fluence is proved. Section 7 then proves progress and type safety. Section 8 proves type
preservation and confluence for a system with uniform syntax for types and term. For this
result, we use automated tools developed in the term-rewriting community, to verify some
of the properties necessary for applying theorems proved in Section 5. Section 9 extends
these to a generalized notion of typing, based on the union of the concrete and abstract
reduction relations. Section 10 applies a rewriting approach to prove the normalization of
well-typed simply typed lambda calculus terms. We conclude and identify future directions
in Section 11.
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2. Rewriting Preliminaries

In this section we collect some basic properties in the setting of abstract reduction systems.
That is, we consider relations → being a subset of X ×X for some arbitrary set X.

We write · for relation composition, and inductively define →0= id (the identity) and
→n=→n−1 · → for n > 0. As usual, for a relation → we write ← for its reverse, →= for its
reflexive closure (zero or one times), →+=

⋃∞
i=1 →

i for its transitive closure (one or more
times), and →∗=

⋃∞
i=0 →

i for its transitive reflexive closure (zero or more times). We will
also use standard notation R(A) for the image of set A under relation R:

R(A) = {a′ | ∃a ∈ A.(a, a′) ∈ R}

We can use this notation to denote the set of predecessors of a set A with respect to → as
←∗ (A). We will also write IdA for {(a, a) | a ∈ A}.

A relation → is said to

• be confluent (Church Rosser, CR(→)) if ←∗ · →∗ ⊆ →∗ · ←∗,
• be locally confluent (Weak Church Rosser, WCR(→)) if ← · → ⊆ →∗ · ←∗,
• have the diamond property (⋄(→)) if ← · → ⊆ →= · ←=,
• be deterministic (det(→)) if ← · → ⊆ id.
• be terminating if there is no infinite descending chain a1 → a2 → · · · .
• be convergent if it is confluent and terminating.

We will sometimes also call an element x1 ∈ X confluent iff for all x2, x3 ∈ X with x1 →
∗ x2

and x1 →
∗ x3, there exists x4 ∈ X with x2 →

∗ x4 and x3 →
∗ x4. It is well-known and easy

to see that det(→)⇒ ⋄(→)⇒ CR(→)⇒WCR(→).

Finally, if →a and →b are binary relations, below we will often write →ba for →a ∪ →b.

3. A Standard Presentation of Simple Typing

In this section, we summarize a standard presentation of the simply typed lambda calcu-
lus (STLC), including syntax and semantics, and statements of the basic meta-theoretic
properties of type preservation and progress. Sections 4 and following will recapitulate
this development in detail, from the rewriting perspective. Including some type and term
constants, together with reduction rules for them, is very standard in the study of pro-
gramming languages and typed lambda calculus. One example is Mitchell’s treatment of
STLC with additional rules [16, Section 4.4.3]). For progress, it is indeed instructive to
include reduction rules for some selected constants. Otherwise, there are no stuck terms
that should be ruled out by the type system, since in pure STLC, every closed normal form
is a value, namely a λ-abstraction. We treat additional rules representatively (as opposed
to parametrically), using constants a and f below.

3.1. Syntax and Semantics. The syntax for terms, types, and typing contexts is the
following, where A, f , and a are specific constants, and x ranges over a countably infinite
set of variables:

types T ::= A | T1 ⇒ T2

standard terms t ::= f | a | x | t1 t2 | λx : T.t
typing contexts Γ ::= · | Γ, x : T
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Γ(x) = T

Γ ⊢ x : T Γ ⊢ f : A⇒ A Γ ⊢ a : A

Γ ⊢ t1 : T2 ⇒ T1 Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T1

Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1. t : T1 ⇒ T2

Figure 1: Type-computation rules for STLC with selected constants

E[(λx : T. t) t′] → E[[t′/x]t]

E[f a] → E[a]

values v ::= λx : T.t | a | f
evaluation contexts E ::= ∗ | (E t) | (t E) | λx : T.E

Figure 2: Small-step reduction semantics for STLC

We will write Types for the set of all types. We assume standard additional conventions
and notations, such as [t/x]t′ for the capture-avoiding substitution of t for x in t′, and E[t]
for grafting a term into an evaluation context. Figure 1 defines a standard type system for
STLC. The judgments derived by the rules in the figure are of the form Γ ⊢ t : T , which
can be viewed as deterministically computing a type T as output, given a term t and a
typing context Γ as inputs. In the topmost leftmost rule of the Figure, we use the notation
Γ(x) = T to mean that there is a binding x : T in Γ. We assume there is at most one such
binding in Γ, renaming bound variables as necessary to ensure this. A standard small-step
reduction semantics, for unrestricted β-reduction, is defined using the rules of Figure 2.
Following standard usage, terms of the form (λx : T.t) t′ or f a are called redexes. An
example of a concrete reduction is (with redexes underlined):

(λx : (A→ A).x (x a)) f → f (f a) → f a → a

3.2. Basic Meta-theory. The main theorem relating the reduction relation→ and typing
is type preservation, which states the following, either for unrestricted β-reduction → or
for some restriction of → (as we will consider below):

(Γ ⊢ t : T ∧ t → t′) ⇒ Γ ⊢ t′ : T

The standard proof method is to proceed by induction on the structure of the typing
derivation, with case analysis on the reduction derivation (cf. Chapters 8 and 9 of [17]).
A separate induction is required to prove a substitution lemma, needed critically for type
preservation for β-reduction steps:

Γ ⊢ t : T ∧ Γ, x : T ⊢ t′ : T ′ ⇒ Γ ⊢ [t/x]t′ : T ′

For call-by-value programming languages, one also typically proves progress, formulated
in terms of values:

(· ⊢ t : T ∧ t 6→) ⇒ t ∈ values

Here, the notation t 6→ means ∀t′. ¬(t → t′); i.e., t is a normal form. Normal forms which
are not values are called stuck terms. An example is f f . Combining type preservation and
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types T ::= A | T1 ⇒ T2

standard terms t ::= x | λx : T. t | t t′ | a | f
mixed terms m ::= x | λx : T.m | m m′ | a | f |

A | T ⇒ m
standard values v ::= λx : T.t | a | f
mixed values u ::= λx : T.m | T ⇒ m | A | a | f

Figure 3: Syntax for STLC using mixed terms

Ec[f a] →c Ec[a]
c(f-β)

Ec[(λx : T.m) u] →c Ec[[u/x]m]
c(β)

Ea[f a] →b Ea[a]
b(f-β)

Ea[(λx : T.m) m′] →b Ea[[m
′/x]m]

b(β)

Ea[(T ⇒ m) T ] →a Ea[m]
a(β)

Ea[λx : T.m] →a Ea[T ⇒ [T/x]m]
a(λ)

Ea[f ] →a Ea[A⇒ A]
a(f)

Ea[a] →a Ea[A]
a(a)

call-by-value evaluation contexts Ec ::= ∗ | (Ec m) | (u Ec)
unrestricted evaluation contexts Ea ::= ∗ | (Ea m) | (m Ea) | λx : T.Ea | T ⇒ Ea

Figure 4: Concrete call-by-value reduction (→c), concrete full β-reduction (→b), and ab-
stract reduction (→a) for STLC

progress allows us to prove type safety [24]. This property states that the normal forms
of closed well-typed terms are values, not stuck terms, and in our setting can be stated:

(· ⊢ t : T ∧ t →∗ t′ 6→) ⇒ ∃v. t′ = v

This is proved by induction on the length of the reduction sequence from t to t′. As already
noted, without constants (f and a here), this result is not so interesting for STLC, since it
follows already by simpler reasoning: reduction cannot introduce new free variables, so t′

must be closed; and it is then easy to prove that closed normal forms are λ-abstractions,
and hence values by definition.

4. Simple Typing as Abstract Reduction

In this section, we see how to view a type-computation (also called type-synthesis) system
for STLC as an abstract operational semantics. We view function types T1 ⇒ T2 as abstract
functions from T1 to T2, and allow these to be applied to arguments. When T1 ⇒ T2 is
applied to the abstract term T1, an abstract β-reduction step is possible, simulating concrete
β-reduction for any function of type T1 ⇒ T2 applied to an argument of type T1. Thus, we
will see abstract reduction as truly an abstraction of the usual reduction, which we thus
view, in contrast, as concrete.
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To view typing as an abstract form of reduction, we use mixed terms, defined in Fig-
ure 3. Types like T1 ⇒ T2 will serve as abstractions of λ-abstractions. For our develop-
ment below, we are going to consider both unrestricted β-reduction, and also call-by-value
β-reduction, a common restriction implemented in practical functional programming lan-
guages like OCaml. Figure 4 gives rules for concrete call-by-value reduction (→c), concrete
full β-reduction (→b), and abstract reduction (→a). As above, we will refer to any term of
the form displayed in context on the left hand side of the conclusion of a rule as a redex. We
denote the union of these reduction relations as→ca. The definition of call-by-value evalua-
tion contexts Ec enforces left-to-right evaluation order in a standard way, while unrestricted
evaluation contexts Ea make abstract reduction and full β-reduction non-deterministic: re-
duction is allowed anywhere inside a term. This is different from the approach followed
by Kuan et al., where abstract and concrete reduction are both deterministic. Here is an
example of reduction using the abstract operational semantics:

λx : (A⇒ A). λy : A. (x (x y)) →a

λx : (A⇒ A). A ⇒ (x (x A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) ((A⇒ A) A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) A) →a

(A⇒ A) ⇒ A ⇒ A 6→a

The final result is a type T , which does not reduce (as noted below). Indeed, using the
standard typing rules of Section 3.1, we can prove that the starting term of this reduction
has that type T , in the empty typing context. Abstract reduction to a type plays the role
of typing above.

Lemma 4.1. For all types T , we have T 6→a.

Proof. This follows by induction on T and inspection of the rules for →a.

If we look back at our standard typing rules (Figure 1), we can now see them as
essentially big-step abstract operational rules. Recall that big-step call-by-value operational
semantics for STLC includes this rule (as well as several others which we elide):

t1 ⇓ λx : T.t′1 t2 ⇓ t′2 [t′2/x]t
′
1 ⇓ t′

t1 t2 ⇓ t′

In our setting, big-step call-by-value semantics would be seen as a concrete big-step re-
duction, which we might denote ⇓c. The abstract version of this rule, where we abstract
λ-abstractions by arrow-types, is

t1 ⇓a T ⇒ T ′ t2 ⇓a T

t1 t2 ⇓a T ′

If we drop the typing context from the standard typing rule for applications (in Figure 1),
we obtain essentially the same rule.

The standard approach to proving type preservation relates a small-step concrete oper-
ational semantics with a big-step abstract operational semantics (i.e., the standard typing
relation). We find it both more elegant, and arguably more informative to relate abstract
and concrete small-step relations, as we will do in Section 6 below.
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4.1. Rewriting Properties of Abstract Reduction. In this subsection, we study the
properties of abstract reduction from the perspective of the theory of abstract reduction
systems (ARSs). From this point of view, abstract reduction is very well behaved: it is a
convergent ARS, as the following two theorems show.

Theorem 4.2 (Termination of Abstract Reduction). The relation →a is terminating.

Proof. We recursively define a natural-number measure µ(m) which can be confirmed to
reduce from m to m′ whenever m→a m′:

µ(x) = 1

µ(λx : T.m) = 1 + µ(m)

µ(m m′) = 1 + µ(m) + µ(m′)

µ(a) = 1

µ(f) = 1

µ(A) = 0

µ(T ⇒ m) = µ(m)

Theorem 4.3. The relation →a is confluent.

Proof. In fact, we will prove→a has the diamond property (and hence is confluent). Suppose
m→a m1 and m→a m2. No critical overlap is possible between these steps, because none
of the redexes in the a-rules of Figure 4 (such as (T ⇒ m) T in the a(β) rule) can critically
overlap another such redex. If the positions of the redexes in the terms are parallel, then
(as usual) we can join m1 and m2 by applying to each the reduction required to obtain the
other. Finally, we must consider the case of non-critical overlap (where the position of one
redex in m is a prefix of the other position). We can also join m1 and m2 in this case by
applying the reduction to mi which was used in m →a m3−i, because abstract reduction
cannot duplicate or delete an a-redex. The only duplication of any subterm in the abstract
reduction rules of Figure 4 is of the type T in a(λ). The only deletion possible is of the
type T in a(β). Since types cannot contain redexes, there is no duplication or deletion of
redexes. This means that if the position of the first redex is a prefix of the second (say),
then there is exactly one descendant (see Section 4.2 of [22]) of the second redex in m1, and
this can be reduced in one step to join m1 with the reduct of m2 obtained by reducing the
first redex. So every aa-peak can be completed with one joining step on each side of the
diagram. This gives the diamond property (and thus confluence for →a).

4.2. Relation with Standard Typing. In this subsection, we prove the following theo-
rem, which relates our notion of typing with the standard one. The proof begins after the
statement of some simple auxiliary lemmas, whose proofs are routine and omitted. The
proof of the right-to-left direction of the implication will take advantage of the fact that
abstract reduction is convergent, as proved in the previous subsection.

Theorem 4.4. For standard terms t, a typing judgment x1 : T1, · · · , xn : Tn ⊢ t : T holds
iff [T1/x1, · · · , Tn/xn]t→

∗
a T .

Lemma 4.5. If t1 →
k
a T , then t1 t2 →

k
a T t2.
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Lemma 4.6. If t2 →
k
a T , then t1 t2 →

k
a t1 T .

Lemma 4.7. If t→k
a T ′ , then T ⇒ t→k

a T ⇒ T ′.

Proof of Theorem 4.4, left-to-right. Suppose x1 : T1, · · · , xn : Tn ⊢ t : T . We will now prove
[T1/x1, · · · , Tn/xn]t →

∗
a T by induction on the structure of the typing derivation of t. To

simplify the writing of the proof, we will use the following notation:

Γ = x1 : T1, · · · , xn : Tn

Γsub = [T1/x1, · · · , Tn/xn]

Base Case:
Γ(x) = T

Γ ⊢ x : T

There must be some i ∈ {1, . . . , n} such that x = xi and T = Ti. So Γsub x = Ti →
∗
a Ti as

required.

Base Case:

Γ ⊢ f : A⇒ A

We indeed have f →a (A⇒ A), as required. The case for a : A is similar.

Case:
Γ ⊢ t1 : T2 ⇒ T1 Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T1

By the induction hypotheses for the derivations given for the two premises of this rule, we
have:

Γsub t1 →
∗
a T2 ⇒ T1

Γsub t2 →
∗
a T2

Our goal now is to construct the reduction sequence:

Γsub (t1 t2)→
∗
a (T2 ⇒ T1)Γsub t2 →

∗
a (T2 ⇒ T1)T2 →a T1

To construct this sequence, it is sufficient to apply transitivity of →∗a and Lemmas 4.5
and 4.6.

Case:
Γ, x : T ⊢ t : T ′

Γ ⊢ λx : T. t : T ⇒ T ′

By the induction hypothesis on the premise of this rule, we have:

Γsub [T/x] t→
∗
a T ′

Now we need to show that

Γsub (λx : T. t)→∗a (T ⇒ T ′)

By applying one a(λ) step and Lemma 4.7 we get:

Γsub (λx : T. t)→a (T ⇒ Γsub [T/x] t)→
∗
a (T ⇒ T ′)

This requires the fact that Γsub [T/x] = [T/x]Γsub, which holds because x 6∈ dom(Γsub)
since we may rename x to avoid this, and because T contains no term variables and hence
is unaffected by applying Γsub.
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Proof of Theorem 4.4, right-to-left. Since abstract reduction is convergent (Theorems 4.2
and 4.3), we may assume that redexes in the reduction sequence to T are always reduced
in leftmost order. Note that convergence is sufficient to justify this assumption, as T is a
normal form, and hence any strategy is guaranteed to reduce the starting term to T in a
finite number of steps. This assumption will simplify some reasoning below. We assume
[T1/x1, · · · , Tn/xn]t→

∗
a T and prove x1 : T1, · · · , xn : Tn ⊢ t : T by induction on the number

n of leftmost →a steps in the reduction to T .

Base Case: there are no →a steps. This means that our term t cannot be reduced

Γsub t = T

In this case, t must be a variable (or else substitution could not result in a type T ). So,
t = x for some variable x, where Γ(x) = T . Then we get:

Γ(x) = T

Γ ⊢ x : T

Step Case: there is at least one →a step. We proceed by case splitting on the form of t.

Case:

Γsub x

This case cannot occur, since either x 6∈ dom(Γsub), in which case we cannot have x →∗a T
for any type T ; or else x ∈ dom(Γsub), and then Γsub x = T . We cannot have a →a step in
that case, because types are normal forms for abstract reduction (Lemma 4.1).
Case:

Γsub f

The only possible step is f →a A ⇒ A, and we indeed have Γ ⊢ f : A ⇒ A. The case for
Γsub a is similar.
Case:

Γsub (t1 t2)

In this case, the reduction sequence must be of the following form, for some mixed term t′

and type T2, and some natural numbers k1 and k2:

Γsub (t1 t2)→
k1
a ((T2 ⇒ T ) t2)→

k2
a (T2 ⇒ T ) T2 →a T

where
1. Γsub t1 →k1

a T2 ⇒ T
2. Γsub t2 →k2

a T2

We are justified in assuming this, because there must be some first position in the reduction
sequence from t1 t2 to T where a descendant of t1 t2 is reduced. That descendant here is
(T2 ⇒ T ) T2. In the reduction sequence prior to that point, we are assuming (as noted at
the start of the proof) that steps occur in leftmost order, so the t1 steps come first, and
then the t2 ones. Now we can apply the induction hypothesis to (1) and (2), which each
have shorter length than the original reduction sequence. This gives us the premises of the
following inference, which suffices to complete this case:

Γ ⊢ t1 : T2 ⇒ T Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T
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Case:

Γsub (λx : T ′. t′)

In this case, we may assume the reduction sequence is of the following form, for some T ′′:

Γsub (λx : T ′. t′)→a (T ′ ⇒ [T ′/x]Γsub t
′)→∗a (T ′ ⇒ T ′′)

where
[T ′/x]Γsub t

′ →∗a T ′′

This is because λx : T ′. t′ is itself an abstract redex, and since we are assuming our reduction
is in leftmost, it must be reduced immediately. Now we can apply the induction hypothesis
on [T ′/x]Γsub t′ →∗a T ′′ and get the premise of the following inference, which suffices to
complete this case:

Γ, x : T ′ ⊢ t′ : T ′′

Γ ⊢ λx : T ′. t′ : T ′ ⇒ T ′′

5. Generic Theorems for Preservation and Combined Confluence

In this section, we collect some abstract properties for →a and→b, from which type preser-
vation and confluence of →ab can be concluded. In subsequent sections we will instantiate
these theorems with abstract and concrete reduction relations.

For the first theorem, recall that in our setting →a computes the type of a term, or
else could reach a stuck term like (A⇒ A) (A⇒ A) which does not correspond to a type.
We want to speak about reductions that lead to types, so we need to phrase the following
theorem in terms of some set S, which we will instantiate later with a set of types. In
condition (3) of the theorem, we interpose Id←∗

a(S)
to restrict peaks to those objects which

a-reduce to an object in S.

Theorem 5.1. Assume

(1) →a (S) = ∅ (that is, S is a set of objects in normal form with respect to →a).
(2) →a is confluent.
(3) ←a ·Id←∗

a(S)
· →b ⊆ (→b ∪ →

∗
a)· ←

∗
a; that is, for every m such that there exists

T ∈ S with m →∗a T , and every m′ and m′′ with m →a m′ and m →b m′′, there
exists a m′′′ such that m′′ →∗a m′′′ and either m′ →b m

′′′ or m′ →∗a m′′′.
(4) every normal form with respect to →a is also a normal form with respect to →b.

Then if T ∈ S and T ←∗a m→b m
′, we have m′ →∗a T .

Proof. Let m→∗a T and m→b m
′, we have to prove that m′ →∗a T . We do this by induction

on the number n of steps in m→n
a T . In case n = 0 we have m = T . By (1), T is a normal

form with respect to→a, which is a normal form with respect to→b due to (4). Som→b m
′

is not possible, and the claim holds trivially.
For the induction step assume m →a m1 for which m1 →

n−1
a T . Applying (3) now

yields m3 such that m′ →∗a m3 and either m1 →b m3 or m1 →
∗
a m3. In case m1 →b m3

we apply the induction hypothesis on m1 →
n−1
a T and conclude m′ →∗a m3 →

∗
a T . In case

m1 →
∗
a m3 we apply confluence of →a (2) by which T and m3 have a common →a-reduct.

As T is a normal form with respect to →a by (1), we conclude m′ →∗a m3 →
∗
a T , concluding

the proof.
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Lemma 5.2. Suppose →a and →b are binary relations such that

(1) →a is confluent, and
(2) ←a · →b ⊆ (→b ∪ →

∗
a)· ←

∗
a.

Then we also have
←∗a · →b ⊆ (→b ∪ →

∗
a)· ←

∗
a

Proof. Assume t→n
a u and t→b v; we have to find w such that u→b ∪ →

∗
a w and v →∗a w.

We do this by induction on n. For n = 0 we choose w = v. For n > 0 write t→a t′ →n−1
a u.

By (2) an element v′ exists such that v →∗a v′ and either t′ →∗a v′ or t′ →b. If t′ →∗a v′ we
apply (1) yielding w satisfying u →∗a w and v′ →∗a w and we are done. If t′ →b then we
apply the induction hypothesis yielding u(→b ∪ →

∗
a)w and v′ →∗a w.

Theorem 5.3. Let →a and →b be binary relations (recall from Section 2 that we write
→ba for →a ∪ →b). Assume

(1) →a is terminating,
(2) →a is confluent,
(3) ←a · →b ⊆ (→b ∪ →

∗
a)· ←

∗
a, and

(4) every normal form with respect to →a is also a normal form with respect to →b.

Then →ba is confluent.

Proof. By Lemma 5.2, we have:

(3′) ←∗a · →b ⊆ (→b ∪ →
∗
a)· ←

∗
a .

Now let t →∗ba u and t →∗ba v; for proving the theorem we have to prove that w exists
satisfying u→∗ba w and v →∗ba w. Choose w to be a →a-normal form of t, which exists due
to (1). Assume t →n

ba u; we will prove that u →∗a w by induction on n. For n = 0 this

follows from t →∗a w. For n > 0 let t →n−1
ba u′ →ba u. From the induction hypothesis we

conclude u′ →∗a w. Combining (2) and (3′) yields

←∗a · →ba ⊆ (→b ∪ →
∗
a)· ←

∗
a .

So since w ←∗a u′ →ba u we conclude that w′ exists satisfying w →b w′ or w →∗a w′, and
u →∗a w′. Since w is not only a →a-normal form, but also a →b-normal form according to
(4), we conclude w′ = w. Hence u →∗a w′ = w, concluding the proof of u →∗a w. Applying
the same argument on t→∗ba v we conclude v →∗a w, concluding the proof of the theorem.

One may wonder whether the requirement of termination is essential for Theorem 5.3.
It is: on the set {1, 2, 3} the relations →a= {(1, 1)} and →b= {(1, 2), (1, 3)} satisfy all
requirements of Theorem 5.3, while →ba is not confluent.

One may wonder whether in Theorem 5.3 the condition (4) on normal forms is essential.
It is, even if not only →a is terminating and confluent but also →b, as is shown by the
following example of relations on 10 elements, in which →a steps are denoted by dashed
arrows and →b steps are denoted by solid arrows.
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In this example there are two convertible normal forms, so the union is not confluent,
and both →a and →b are both confluent and terminating; →a is even deterministic. Also
condition (3) of Theorem 5.3 is easily checked, even stronger: ←a · →b ⊆ →ba · ←

=
a . This

example was found using a SAT solver. A direct encoding of the example to be looked for
run out of resources. However, by adding a symmetry requirement, was observed on the
first example, the SAT solver yielded a satisfying assignment that could be interpreted as
a valid example. The example given above was obtained from this after removing some
redundant arrows. Independently, Bertram Felgenhauer found an example that could be
simplified to exactly the same example as given here. This remarkable example was the
starting point of developing the tool CARPA by which such examples can be found fully
automatically.

6. Type Preservation and Combined Confluence for STLC

We now prove type preservation for full β-reduction (the →b relation of Section 4), based
on the rewriting formulation. This is in contrast to the results of Kuan et al., who obtain
type preservation for the rewriting approach as a corollary of type preservation based on
a standard big-step notion of typing (and the relation of that notion of typing with the
small-step notion).

Definition 6.1 (Typability). A mixed term m is called typable if m→∗a T for some type
T .

If we translate our standard statement of type preservation (at the beginning of Section 3.2)
so that it uses abstract reduction instead of the usual typing relation, we have the following.

Theorem 6.2 (Type Preservation). Let m,m′ be mixed terms and T be a type. If m→∗a T
and m→b m

′, then m′ →∗a T .

The proof of this theorem is given by applying Theorem 5.1: we need to check its conditions
(1), (2), (3) and (4). We instantiate the set S in condition (1) with the set of types T , which
are normal forms by Lemma 4.1. Condition (2) follows from Lemma 4.3. Condition (4)
is immediate from the definitions of →a and →b: if →b applies on a term t, then t either
contains fa via rule b(f-β) by which →a applies via a(f), or t contains λx : T.m] via rule
bβ) by which →a applies via a(λ). So it remains to check condition (3), which follows from
the following lemma.

Lemma 6.3. Let m0 be a typable mixed term and let m1,m2 be mixed terms such that
m0 →a m1 and m0 →b m2. Then a mixed term m3 exists such that m2 →

∗
a m3 and either
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m1 →b m3 or m1 →
∗
a m3. Furthermore, if the step from m0 to m2 is a call-by-value step,

so is the step from m1 to m3.

Proof. We distinguish the ways the redexes in m0 are related.
If the redexes of m0 →a m1 and m0 →b m2 are parallel, then m3 can be chosen such

that m1 →b m3 and m2 →a m3 (preserving whether or not the b-step is call-by-value).
If the redex of m0 →a m1 is above the redex of m0 →b m2, then the →a step is either

of the type a(β) or a(λ), in which the →b acts on the mixed term m as it occurs in the rule
a(β) or a(λ). As this m is not duplicated, we get m3 such that m1 →b m3 and m1 →a m3

(and the step m0 →b m2 is not call-by-value).
If the redex of m0 →a m1 is below the redex of m0 →b m2, then some further case

analysis is required.
If there is no overlap, then m3 can be chosen such that m1 →b m3 (preserving being

call-by-value) and m2 →
∗
a m3.

If there is overlap and m0 →a m1 is an application of a(f) or a(a), then m0 = Ea[f a]
and m2 = Ea[a], and m3 can be chosen to be Ea[A], satisfying m1 →

2
a m3 and m2 →a m3.

The remaining case is illustrated by the following picture:

m0 = Ea[(λx : T.m) m′]

m1 = Ea[(T ⇒ [T/x]m) m′] m2 = Ea[[m
′/x]m]

a b

Ea[(T ⇒ [T/x]m) T ]

Ea[[T/x]m]

since m′ →∗a T

a *

since m′ →∗a T
a *

a

The picture already shows that by choosing m3 = Ea[[T/x]m] we obtain m1 →
∗
a m3

and m2 →
∗
a m3 if we can prove m′ →∗a T . For doing so we use the assumption that m0

is typable: there exists a type T ′ such that m0 = Ea[(λx : T.m) m′] →∗a T ′. Since T ′ is
a type it does not contain a λ symbol, so somewhere in this reduction the λ in λx : T.m
should be removed. By inspecting the rules we see that this can only be done by the rule
a(λ) by which λx : T.− is replaced by T ⇒ −. Next the (invisible) application symbol in
(λx : T.m) m′ should be removed. This can only be done by the rule a(β). This rule is only
applicable if first m′ is rewritten by →a steps to T , indeed proving m′ →∗a T .

Theorem 6.4. The relation (Id←∗
a(Types)

· →a) ∪ (Id←∗
a(Types)

· →b) is confluent.

Proof. We will apply Theorem 5.3. For this, we need to check properties (1) to (4) for
the particular relations Id←∗

a(Types)
· →a and Id←∗

a(Types)
· →b. Property (2) follows from

Theorem 4.3 and the fact that Id←∗
a(Types)

is the identity relation. All peaks must be of
the form m1 ←a m ←id m →id m →a m2, due to the composition with Id←∗

a(Types)
. By

Theorem 4.3, if m1 ←a m →a m2, then there exists m3 such that m1 →
∗
a m3 ←a m2.

Thus, any Id←∗
a(Types)

· →a peak m1 ←a m ←id m →id m →a m2 can be completed with
m1 →id m1 →a m3 ←a m2 ←id m2. Likewise, By Theorem 4.2 →a is terminating, so



14 STUMP, ZANTEMA, KIMMELL, EL HAJ OMAR

Id←∗
a(Types)

· →a ⊆ →a is also terminating, proving property (1). Property (3) follows from
Lemma 6.3. So it remains to prove Property (4). This is immediate from the definitions of
→a and →b: if →b applies on a term t, then t either contains fa via rule b(f-β) by which
→a applies via a(f), or t contains λx : T.m via rule b(β) by which →a applies via a(λ).

Corollary 6.5 (Confluence of Combined Reduction). Every typable mixed term is confluent
with respect to the reduction relation →ba.

Proof. Confluence of the set of typable mixed terms is equivalent to confluence of the relation
Id←∗

a(Types)
· →ba, which is easily seen to be equal to

(Id←∗
a(Types)

· →a) ∪ (Id←∗
a(Types)

· →b)

By Theorem 6.4, the latter relation is confluent.

A form of typability is essential, since the relation →ba is not confluent in general, as
Kuan et al. note also in their setting. For instance, the non-typable term (λx : A.x)(λx :
A.x) has two distinct normal forms

(A⇒ A)(A⇒ A)←+
a (λx : A.x)(λx : A.x)→b λx : A.x→a (A⇒ A).

7. Progress and Type Safety for STLC

In this section, we complete the basic meta-theory for STLC by proving progress and type
safety theorems for call-by-value reduction (the →c relation of Section 4). Lemmas 7.4
and 7.5 are stated in a somewhat more general way, so that we can also use them to show
type safety for the generalized form of typability we will consider in Section 9.

7.1. Quasi-Stuck Terms. We begin by inductively defining the set of quasi-stuck terms
S, in Figure 5. Also, let us call a quasi-stuck term which is not a value stuck. The purpose
of these definitions is to generalize a characterization of c-normal standard terms to mixed
terms (Lemmas 7.1 and 7.2, proved next), in such a way that we can show that the set of
quasi-stuck terms is closed under abstract reduction (Lemma 7.3, proved below). This will
allow us to prove that typable quasi-stuck terms must be values (Lemma 7.5), from which
we easily obtain the desired main theorems of progress and type safety.

Lemma 7.1. If m is quasi-stuck, then m 6→c.

Proof. The proof is by an easy structural induction on m, using the definition of quasi-
stuck.

• Mixed values u are in S.
• Terms of the form a s or A s are in S if s ∈ S.
• Terms of the form f s or (A⇒ A) s are in S if s ∈ S and s is neither a nor A.
• Terms of the form (λx : T.m) s or (T ⇒ m) s are in S if s ∈ S and s is not a mixed
value.
• Terms of the form s s′ are in S if s, s′ ∈ S and s is not a mixed value.

Figure 5: Inductive definition of the set S of quasi-stuck terms
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Lemma 7.2. If standard term t is closed and t 6→c, then t is quasi-stuck.

Proof. The proof is by structural induction on t. If t is a (standard) value it is quasi-stuck,
and it cannot be a variable since t is closed. So suppose it is an application t1 t2. Since
t1 is closed, t1 cannot be a variable. We consider now the remaining possibilities. It could
be that t1 is a and t2 is some other c-normal form. Then by the induction hypothesis, t2
is quasi-stuck, and t is, too, using the second clause above in the definition of quasi-stuck
terms. Next, we could have the situation where t1 is f , and t2 is any c-normal form except
a. Then by the induction hypothesis, t2 is quasi-stuck, and t is, too, using the third clause
in the definition of quasi-stuck terms. Next, we could have that t1 is a λ-abstraction, and
t2 is any c-normal form except a standard value. Then by the induction hypothesis, t2 is
quasi-stuck, and it cannot be a mixed value other than a standard value, because t2 is a
standard term. So t is quasi-stuck, too, using the fourth clause . Finally, if t1 is some
application, then by the induction hypothesis, t1 and t2 are both quasi-stuck. Since t1 is
not a value, the fifth clause above gives us that t is quasi-stuck.

Lemma 7.3 (Reduction of Quasi-Stuck Terms). If m is quasi-stuck, and m →a m′, then
m′ is also quasi-stuck. Furthermore, if m is a mixed value, then so is m′; and if m is not a
mixed value, then neither is m′.

Proof. The proof is by structural induction on m. Suppose m is a mixed value. Then it is
easy to see by inspection of the reduction rules that m′ must be, too. So suppose m is of the
form a s or A s with s ∈ S. Then either the assumed reduction is of the form a s→a A s,
or else of the form a s→a a m′′ or A s→a A m′′. In the former case, the resulting term is
a quasi-stuck non-value. In the latter, we may apply the induction hypothesis to conclude
that m′′ is quasi-stuck, and hence a m′′ (or A m′′) is a quasi-stuck non-value.

If m is of the form f s or (A⇒ A) s, where s ∈ S and s is not a or A, then either the
assumed reduction is of the form f s→a (A⇒ A) s or else f s→a f m′′ or (A⇒ A) s→a

(A⇒ A) m′′. In the former case, the resulting term is a quasi-stuck non-value, by the third
clause of the definition of quasi-stuck terms above. In the latter, if s is not a value, we again
use our induction hypothesis to conclude that m′′ is a quasi-stuck non-value, and hence not
a or A. So m′ is a quasi-stuck non-value, too. If s is a value, then so is m′′, and reduction
cannot turn a value other than a into a or A. So again, m′′ has the required form to be a
quasi-stuck non-value.

Suppose m is of the form (λx : T.m′′) s or (T ⇒ m′′) s, with s ∈ S and s not a mixed
value. Then either the assumed reduction is of the form (λx : T.m′′) s→a (T ⇒ [T/x]m′′) s;
or else of the form (λx : T.m′′) s→a (λx : T.m′′′) s or (T ⇒ m′′) s→a (T ⇒ m′′′) s; or else
of the form (λx : T.m′′) s →a (λx : T.m′′) m′′′ or (T ⇒ m′′) s →a (T ⇒ m′′) m′′′. In the
first two cases, the resulting term still has the required form to be a quasi-stuck non-value.
In the third case, we know s is not a value by the definition of quasi-stuck terms, so we
may use our induction hypothesis to conclude that m′′′ is a quasi-stuck non-value, which is
sufficient to conclude that the resulting term is again stuck.

Finally, suppose m is of the form m1 m2, where m1 is not a mixed value. Then the
assumed reduction must be of the form either m1 m2 →a m′1 m2 or else m1 m2 →a m1 m′2,
for some m′1 with m1 →a m′1, or else some m′2 with m2 →a m′2. This is because, by
inspection of the reduction rules, m itself cannot be a redex if m1 is not a mixed value. In
the former case, we may apply the induction hypothesis to conclude that m′1 is a quasi-
stuck non-value, and hence so is m′. In the latter, we may apply the induction hypothesis
to conclude that m′2 is quasi-stuck, and hence so is m′.
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Lemma 7.4. If m is quasi-stuck (including the case where m is a closed mixed value), and
m→∗ca T , then m→∗a T .

Proof. The proof is by induction on the length of the reduction sequence from m to T . If
this length is 0, the result obviously holds. So suppose we have m →ca m′ →∗ca T . Since
m is quasi-stuck, we have m 6→c by Lemma 7.1. So it must be the case that m →a m′.
Since m′ is quasi-stuck by Lemma 7.3, we may apply our induction hypothesis to conclude
m′ →∗a T , and hence m→∗a T .

Lemma 7.5. Suppose m is a closed quasi-stuck term. Suppose further that m →∗ca T .
Then m is a mixed value.

Proof. The proof is similar to the previous one, and proceeds by induction on the length
of the reduction sequence from m to T . If this length is 0, the result holds, since types
are mixed values. So suppose we have m →ca m′ →∗ca T . Since m is quasi-stuck, we have
m 6→c by Lemma 7.1. So it must be the case that m →a m′. We now consider cases on
the form of m. If m is a mixed value the result holds. So suppose it is a non-value. Then
by Lemma 7.3, m′ must also be a quasi-stuck non-value, and we may apply the induction
hypothesis to derive a contradiction.

7.2. Concluding Progress and Type Safety. Armed with the concept of quasi-stuck
terms and its associated lemmas, we can now obtain the main results of this section.

Theorem 7.6 (Progress). If standard term t is closed, t →∗a T , and t 6→c, then t is a
(standard) value.

Proof. By Lemma 7.2 and the assumption t 6→c, we know t is quasi-stuck. Now since our
assumption that t→∗a T implies t→∗ca T , we can apply Lemma 7.5 to conclude that t is a
mixed value (and hence a standard value, since t is a standard term).

Theorem 7.7 (Type Safety). If standard term t is closed, t →∗a T , and t →∗c m 6→c, then
m is a standard value.

Proof. The proof is by induction on the length of the reduction sequence from t to m. In
the base case, we apply Theorems 7.6, since we have m = t 6→c in that case. For the
step case, suppose we have t →c m′ →∗c m 6→c. In this case, we can apply Theorem 6.2
to conclude m′ →∗a T . It is easily proved by induction on the structure of call-by-value
evaluation contexts Ec that if we have t→c m

′, then m′ is a standard term t′. We may now
apply the induction hypothesis, since we have t′ →∗a T and t′ →c m 6→c.

8. Applying Automated Analysis Tools to Type Preservation

In this section, we show how automated tools for analyzing term-rewriting systems can be
applied to automate part of the proof of type preservation. We will consider a language,
which we call Uniform-STC, that does not distinguish terms and types syntactically. Ad-
vanced type systems like Pure Type Systems must often rely solely on the typing rules to
distinguish terms and types (and kinds, superkinds, etc.) [5]. In Uniform-STC, we explore
issues that arise in applying the rewriting approach to more advanced type systems. We
must now implement kinding (i.e., type checking of types) as part of the abstract reduction
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mixed terms t ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | t1 t2| t1 ⇒ t2 | A | kind(t1, t2)
mixed values u ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | A | t1 ⇒ t2
concrete evaluation contexts Ec ::= ∗ | Ec t | u Ec

Figure 6: Uniform-STLC language syntax and evaluation contexts

c(β-S). Ec[S〈t1, t2, t3〉 u u′ u′′]→c Ec[u u′′ (u′ u′′)]

c(β-K). Ec[K〈t1, t2〉 u u′]→c Ec[u]

a(S). S〈t1, t2, t3〉 →a kind(t1, kind(t2, kind(t3, (t1 ⇒ t2 ⇒ t3)⇒ (t1 ⇒ t2)⇒ (t1 ⇒ t3))))
a(K). K〈t1, t2〉 →a kind(t1, kind(t2, (t1 ⇒ t2 ⇒ t1)))
a(β). (t1 ⇒ t2) t1 →a kind(t1, t2)
a(k-⇒). kind((t1 ⇒ t2), t)→a kind(t1, kind(t2, t))
a(k-A). kind(A, t)→a t

Figure 7: Concrete and abstract reduction rules

relation. We adopt a combinatory formulation so that the abstract reduction relation can
be described by a first-order term-rewriting system.

Figure 6 shows the syntax for the Uniform-STC language. There is a single syntactic
category t for mixed terms and types, which include a base type A and simple function types.
S〈t1, t2, t3〉 and K〈t1, t2〉 are the usual combinators, indexed by terms which determine their
simple types. The kind construct for terms is used to implement kinding. The rules for
concrete and abstract reduction are given in Figure 7. The concrete rules are just the
standard ones for call-by-value reduction of combinator terms. For abstraction reduction,
we are using first-order term-rewriting rules (unlike for previous systems).

For STLC (Section 6), abstract β-redexes have the form (T ⇒ t) T . For Uniform-STC,
since there is no syntactic distinction between terms and types, abstract β-redexes take the
form (t1 ⇒ t2) t1, and we must use kinding to ensure that t1 is a type. This is why the
a(β) rule introduces a kind-term. We also enforce kinding when abstracting simply typed
combinators S〈t1, t2, t3〉 and K〈t1, t2〉 to their types. The rules for kind-terms (a(k-⇒) and
a(k-A)) make sure that the first term is a type, and then reduce to the second term.

Here, we define typability by value u to mean abstract reduction to u where u is
kindable, which we define as kind(u,A) →∗a A. This definition avoids the need to define
types syntactically.

Following the methodology embodied in Theorem 5.1, we must first prove the abstract
reduction is confluent. In fact, it is convergent, and we can apply analysis tools to determine
this, as shown in the next two theorems.

Theorem 8.1. The term rewriting system →a is terminating.

Proof. The automated termination checker Aprove reports that the rewrite system for→a

is terminating, using a recursive path ordering [11].

Theorem 8.2. The term rewriting system →a is confluent.
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Proof. Abstract reduction for Uniform-STC does not have the diamond property due to the
non-left-linear rule a(β), where there could indeed be redexes in the expressions matching
the repeated variable t1. By Theorem 8.1, however, we can apply Newman’s Lemma to
conclude confluence from local confluence. Local confluence follows because all the aa-peaks
can be joined using either one a-step on either side as for STLC, or else using additional
balancing steps if one of the rules applied is a(β).

But even easier than this reasoning is applying an automated confluence checker: the
ACP tool immediately reports that the abstract reduction relation is confluent [3].

The proofs of Theorems 8.1 and 8.2 demonstrate how the rewriting approach to typing
benefits from recent advances in analysis tools for term rewriting: we can use termination
and confluence checkers to analyze the abstract reduction relation →a corresponding to
typing. We expect this situation to recur for more advanced type systems, although some
may provide new challenges for automated analysis tools (we give an example below).

Lemma 8.3. ←a ·Id←∗
a(S)
· →c ⊆ (→c ∪ →

∗
a)· ←

∗
a.

Proof. We distinguish the peaks originating at typable terms t.
If ←a and →c steps are parallel – E′c[t] ←a Ec[t] ←id Ec[t] →id Ec[t] →c Ec[t

′] – the
peak can be completed directly E′c[t]→id E′c[t]→c E

′
c[t
′]←a Ec[t

′]←id Ec[t
′].

If the ←a and →c steps overlap, there are two cases, corresponding to c(β-K) and
c(β-S) reduction steps. We show the completion for c(β-K) peaks (omitting the →id steps
to simplify the presentation); the argument for c(β-S) peaks is similar.

P. Ec[u[(t̂ t t
′)]]←a Ec[(K〈t1, t2〉 t t

′)]→a Ec[t]
L. Ec[u[(t̂ t t

′)]]→∗a Ec[u[(t̂ t1 t′′)]]→a Ec[u[((t2 ⇒ t1) t
′′)]]→∗a

Ec[u[((t2 ⇒ t1) t2)]]→a Ec[kind(t1, kind(t2, t1))]→
∗
a Ec[t1]

R. Ec[t]→
∗
a Ec[t1]

The →∗a-steps are justified because the peak term (shown on line (P)) is typable by com-
position with Id←∗

a(S)
. By confluence of abstract reduction, this implies that the sources

of all the left steps are also typable. For each →∗a-step, since abstract reduction cannot
drop redexes (as all rules are non-erasing), we argue as for STLC that a descendant of the
appropriate displayed kind-term or application must eventually be contracted, as otherwise,
a stuck descendant of such would remain in the final term. Kindable terms cannot contain
stuck applications or stuck kind-terms, because our abstract reduction rules are non-erasing.
And contraction of those displayed kind-terms or applications requires the reductions used
for the →∗a-steps, which are sufficient to complete the peak.

Lemma 8.4. Every normal form with respect to →a is also a normal form with respect to
→b.

The normal forms of →a include A, t1 ⇒ t2 where t1 and t2 are a-normal forms,
(t1 ⇒ t2) t′1 where t1 6= t′1, and kind(t1, t) where t1 is not generated by the grammar
T ::= A|T ⇒ T . By inspection, Ec[A] 6→c and Ec[t1 ⇒ t2] 6→c.

Theorem 8.5 (Type Preservation). Let m,m′ be mixed terms and T be a term such that
kind(T, t)→a t. If m→∗a T and m→c m

′, then m′ →∗a T .

Proof. By application of Theorem 5.1. Condition (1) is satisfied by instantiating S by the
set of terms {t|kind(t, t′) →a t}. Condition (2) follows by Theorem 8.2. Condition (3) by
Lemma 8.3, condition (4) by Lemma 8.4.



A REWRITING VIEW OF SIMPLE TYPING 19

Theorem 8.6. Every mixed typable term is confluent with respect to the reduction relation
→ac.

Proof. For proving that→ba is confluent for typable mixed terms we need to check properties
(1) to (4) of Theorem 5.3 for the particular relations Id←∗

a(S)
· →a and Id←∗

c(T )· →c. The
composition of →a and →b with Id←∗

a(S)
serves to ensure that we are only considering

typable terms.
Property (2) follows from Theorem 8.2 and the fact that Id←∗

a(Types)
is the identity

relation. All 1-step peaks of must be of the form m ← m → m, due to the composition
with Id←∗

a(Types)
. By Theorem 8.2, if m1 ←a m →a m2, then there exists m3 such that

m1 →
∗
a m3 ←a m2. Thus, any Id←∗

a(Types)
· →a peak m1 ←a m←id m→id m→a m2 can be

completed with m1 →id m1 →a m3 ←a m2 ←id m2. By Theorem 8.1 →a is terminating, so
Id←∗

a(Types)
· →a ⊆ →a is also terminating, proving property (1). Property (3) follows from

Lemma 8.3. Property (4) follows from Lemma 8.4.

As an aside, note that a natural modification of this problem is out of the range of
ACP, version 0.20. Suppose we are trying to group kind-checking terms so that we can
avoid duplicate kind checks for the same term. For this, we may wish to permute kind-
terms, and pull them out of other term constructs. The following rules implement this idea,
and can be neither proved confluent nor disproved by ACP, version 0.20. Just the first seven
rules are also unsolvable by ACP.

(VAR a b c A B C D)

(RULES

S(A,B,C) -> kind(A,kind(B,kind(C,

arrow(arrow(arrow(A,arrow(B,C)),arrow(A,B)),arrow(A,C)))))

K(A,B) -> kind(A,kind(B,arrow(A,arrow(B,A))))

app(arrow(A,b),A) -> kind(A,b)

kind(base,a) -> a

kind(arrow(A,B),a) -> kind(A, kind(B, a))

kind(A,kind(A,a)) -> kind(A,a)

kind(A,kind(B,a)) -> kind(B,kind(A,a))

app(kind(A,b),c) -> kind(A,app(b,c))

app(c,kind(A,b)) -> kind(A,app(c,b))

arrow(kind(A,b),c) -> kind(A,arrow(b,c))

arrow(c,kind(A,b)) -> kind(A,arrow(c,b))

kind(kind(a,b),c) -> kind(a,kind(b,c))

)

9. Generalizing Nuprl’s Direct Computation Rules

Martin-Löf’s Intuitionistic Type Theory (ITT), as formulated in [15], is a system of four
judgments presented with a rigorous but informal semantics. A typing judgment of the
form a ∈ A “means that a has a canonical object of the canonical type denoted by A as
value” [15, page 174]. Here, Martin-Löf is making use of the concept of a term (of ITT)
having a value, a concept he defines earlier in the paper. The authors of the Nuprl system
realized that this semantics justifies more permissive typing rules than allowed by Martin-
Löf’s own formal systems [8] (see also Section 2.2 of [2] for a historical perspective). In
particular, it justifies so-called direct computation rules, which turned out to be useful for



20 STUMP, ZANTEMA, KIMMELL, EL HAJ OMAR

formal development with Nuprl:
t→∗ t′ t′ ∈ T

t ∈ T

Applying Theorem 4.4, we can view this rule from a rewriting perspective. We will use call-
by-value reduction, as full β-reduction would require additional technicalities that would
not be illuminating (we would have to use parallel reduction and incorporate a proof of
confluence of β-reduction, in order to get preservation of generalized typing).

t→∗c t
′ t′ →∗a T

t→∗a T

In this section, we will take the idea of Nuprl’s direct computation rules one step further,
by adopting the following definition.

Definition 9.1 (Generalized Typability). A mixed term m is called generalized typable

if m→∗ca T for some type T .

This allows us to view (call-by-value versions of) Nuprl’s direct computation rules as em-
bodying a special case of generalized typability, namely →∗c · →

∗
a. We will see in this sec-

tion that we can prove type preservation directly for generalized typing, using the rewriting
approach. Note that generalized typability is not obviously decidable, since →ca is not
terminating

A simple example of generalized typability is given by the term (λx : A. λy : A.y) λx :
A.x x. Note that the argument term λx : A.x x is not simply typable. This term has several
ca-reduction sequences, including the following one:

(λx : A. λy : A.y) λx : A.x x →a

(λx : A. (A⇒ A)) λx : A.x x →a

(λx : A. (A⇒ A)) (A⇒ (A A)) →c

A⇒ A

Because this term ca-reduces to a type, the generalized type-safety property we will obtain
in this section tells us that the c-normal form of this term, if such exists, is a value. This
can, of course, be confirmed for this case, where the c-normal form is just λy : A.y. Notice
that this example also shows that →ca is not confluent, as we can also reduce it to a stuck
term in this way:

(λx : A. λy : A.y) λx : A.x x →a

(λx : A. (A⇒ A)) λx : A.x x →a

(λx : A. (A⇒ A)) (A⇒ (A A)) →a

(A⇒ (A⇒ A)) (A⇒ (A A)) 6→ca

Theorem 9.2 (Generalized Type Preservation for Call-By-Value Reduction). If m→∗ca T
and m→c m

′, then m′ →∗ca T .

Proof. We cannot conveniently apply Theorem 5.1, because the natural instantiation would
be to take →ca for the relation →a in the theorem – but then we would have to prove
confluence of →ca, which does not hold (as shown just above). So instead we give a direct
proof, by induction on the length of the assumed ac-sequence from m to T . The sequence
cannot be of length 0, since m cannot be a type (since it c-reduces, as no type can).

For the step case: suppose the assumed ca-reduction is of the form m →a m′′ →∗ca T .
We now consider cases for the form of overlap of the step m→a m′′ and m→c m

′. Suppose
the c-step is Ec[f a] →c Ec[a]. If the a-step is in Ec, that means m′′ = E′c[f a], where the
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hole in Ec is at the same position as in E′c. We can just permute these steps, to obtain
Ec[a] →a E′c[a] and E′c[f a] →c E′c[a]. Now the induction hypothesis can be applied with
E′c[f a] (i.e., m′′) as the peak term, and E′c[a] as the term to which it c-steps.

So suppose the a-step is in the displayed f a of Ec[f a]. Then before the reduction
sequence from m′′ to T can perform a c-step, it must first reduce the residual of f a to A,
since that residual occurs in a c-reduction position. So the reduction sequence from m′′ to
T must look like the following, where the hole in Ec and in E′c are at the same position:

m′′ →∗a E′c[A]→
∗
ca T

By performing the a-reductions which transformed Ec to E′c, we can reduce Ec[a] to E′c[A],
and then we are done, since we then have m′ →∗a E′c[A]→

∗
ca T .

We now must consider the case where the c-step is Ec[(λx : T ′.m1) u]→c Ec[[u/x]m1].
Again, if the a-step is in Ec, we can permute steps and apply the induction hypothesis. If
the a-step is in m1 or in u, we can also permute the steps, though if the reduction is in u
(say u→a u′), we will in general have Ec[[u/x]m1]→

∗
a Ec[[u

′/x]m1], since x need not appear
exactly once in m1. Nevertheless, we can still apply the induction hypothesis with m′′ as
the peak term, since we will only ever produce one c-step from m′′ by permuting steps.
Finally, suppose the a-step is Ec[(λx : T ′.m1) u] →a Ec[(T

′ ⇒ [T ′/x]m1) u]. By similar
reasoning as in the previous case, the ca-reduction sequence from Ec[(T

′ ⇒ [T ′/x]m1) u]
to T may contain a-steps transforming Ec to some E′c, but it cannot take a c-step until it
has reduced the displayed (T ′ ⇒ [T ′/x]m1) u to [T ′/x]m′1, with u →∗a T ′ and m1 →

∗
a m′1.

This is because that displayed term is in c-reduction position and neither a value nor a
redex. We can then duplicate any a-steps taken in Ec to a-reduce Ec[[u/x]m1] (i.e., m

′) to
E′c[[T

′/x]m′1]. This term then ac-reduces to T , and we are done.

Theorem 9.3 (Generalized Progress). If standard term t is closed, t →∗ca T , and t 6→c,
then t is a (standard) value.

Proof. As for Theorem 7.6, we obtain this result by applying Lemmas 7.2 and 7.5.

Theorem 9.4 (Generalized Type Safety). If standard term t is closed, t →∗ca T , and
t→∗c t

′ 6→c, then t′ is a (standard) value.

Proof. This is a direct corollary of Theorems 9.2 and 9.3.

10. A Rewriting Approach to Normalization for STLC

In this Section, we will see how the rewriting approach to typing impacts a standard ap-
proach to proving that every typable (closed) standard term of the simply typed lambda
calculus has a b-normal form. We will work with a slightly different presentation of STLC
than we saw in Section 4, in particular dispensing with the term constants a and f . We
assume a non-empty set of type constants A. The syntax we are using in this section is:

types T ::= A | T1 ⇒ T2

mixed terms m ::= x | λx : T.m | m m′ | A | T ⇒ m
standard terms t ::= x | λx : T. t | t t′

The abstract and concrete reduction relations are then defined as follows, where we use
mixed terms m as contexts (sometimes using meta-variable m̂ in this case), writing m[m′]
to denote the replacement of the unique occurrence of a special variable ∗ in m by m′.
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m̂[(λx : T.m) m′] →b m̂[[m′/x]m]
b(β)

m̂[(T ⇒ m) T ] →a m̂[m]
a(β)

m̂[λx : T.m] →a m̂[T ⇒ [T/x]m]
a(λ)

10.1. Interpretation of Mixed Terms. The proof in this section is based on ideas from
standard proofs, such as Girard’s proof in the book Proofs and Types [12]. The technical
details evolve differently, however, since we are using the rewriting approach to typing.
Similarly to Girard’s proof, we are going to define an interpretation of open types as sets
of standard terms. Here, we need to generalize this to give interpretations [[m]]φ of mixed
terms m, where (as standard) φ assigns interpretations to the free variables of m. The most
enlightening observation that will come from this is Theorem 10.6 (Abstraction Theorem),
which says that interpretation is monotonic with respect to abstract reduction: if m→a m′,
then [[m]]φ ⊆ [[m′]]φ. If one views a set as abstracting its elements, and if one considers a
mixed term as a code for the set of terms which is its interpretation, then the Abstraction
Theorem shows that more abstract codes have more abstract interpretations. This is an
elegant perspective that arises – from the standard Tait-Girard method – only by taking
a small-step view of typing; existing proofs for normalization in the literature do not have
any theorem which corresponds (in any obvious way) to the Abstraction Theorem.

So now to begin the development, let WN be the set of standard terms which are weakly
normalizing with respect to →b (that is, terms t such that there exists some t′ such that
t→∗b t

′ 6→b). Also, if→ is any binary relation on standard terms and R any set of standard
terms, we will write → (R) for the image of R under → (that is, {t′ | ∃t ∈ R. t→ t′}).

We first define R to be the set of all sets R of standard terms satisfying the following
conditions:

(1) ←∗b (R) ⊆ R
(2) R 6= ∅
(3) R ⊆WN

The first condition ensures that t′ →∗b t and t ∈ R imply t′ ∈ R. An assumption like
this is often made about such sets of terms. We will call elements of R reducibility sets.
Much work has been devoted to comparing different conditions for families of sets in the
context of the interpretation of types (see, e.g., [18, 10]). Our focus here is not so much
on the specific conditions on the interpretations of mixed terms, as on how interpretations
of terms in the abstract reduction relation are related. The conditions we adopt here are
simple and sufficient for weak normalization of closed terms (cf. also Chapter 12 of [17]).

We will use φ as a meta-variable for assignments, which are functions from Var to R.
We write φ[R/x] to mean the function φ updated to map variable x to R ∈ R. Now for
any m and φ with FV(m) ⊆ dom(φ), we define the interpretation [[m]]φ of m with respect
to φ in Figure 8. To ensure that interpretations of types satisfy the first property above
of reducibility sets, we need to close under ←∗b in the last two clauses of the definition (in
Figure 8). Since we are proving normalization, we take the set of normalizing terms as the
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[[T ⇒ m]]φ = {t | ∀t′ ∈ [[T ]]φ. t t
′ ∈ [[m]]φ}

[[x]]φ = φ(x)
[[A]]φ = WN
[[λx : T.m]]φ = ←∗b ({λx : T.t | ∀t′ ∈ [[T ]]φ. [t

′/x]t ∈ [[m]]φ[[[T ]]φ/x]})
[[m1 m2]]φ = ←∗b ({t1 t2 | t1 ∈ [[m1]]φ ∧ t2 ∈ [[m2]]φ}

Figure 8: The interpretation of mixed terms

interpretation of A, similarly to what is standardly done for atomic types (e.g., in Girard’s
proof).

10.2. Interpretations of Types are Reducibility Sets. In this section, we prove that
for all types T and φ with FV(T ) ⊆ dom(φ), we have [[T ]]φ ∈ R. We will elide this condition
relating T (or instead m) and φ below. We prove the three properties of reducibility sets
given in the previous section. The properties must be proved in order, as later properties
depend on earlier ones. The first property is needed in a more general form, for any mixed
term m, and not just types T . The second two properties are only needed for types.
The proofs in this section are similar to those used for the standard definition of typing,
except that there, they are usually proved by mutual induction. Here we can prove them
independently, though in sequence, due to the simpler form of the second property. While
the development in this section is similar to the usual one, in the next section we will see
something significantly different.

Lemma 10.1. ←∗b [[m]]φ ⊆ [[m]]φ

Proof. The proof is by structural induction on m. If m is a λ-abstraction, or application,
the desired property follows by idempotence of ←∗b as an operator on sets of terms. If m is
a variable x, then the property follows by the same property for φ(x), since we stipulated
assignments map variables to elements of R. If φ = A, then we must prove

←∗b (WN) ⊆WN

But this just amounts to the obvious fact that if t′ →∗b t and t is weakly normalizing, then
t′ is also weakly normalizing.

Finally, suppose m is T ⇒ m′ for some m′. Assume an arbitrary t ∈ [[T ⇒ m′]]φ, and
arbitrary t′ with t′ →∗b t. We must show t′ ∈ [[T ⇒ m′]]φ. To do this, by the definition of the
interpretation of⇒-terms, it suffices to consider arbitrary t′′ ∈ [[T ]]φ, and show t′ t′′ ∈ [[m′]]φ.
We have t t′′ ∈ [[m′]]φ by the definition of the interpretation of ⇒-terms. Then we get the
desired conclusion by the induction hypothesis on m′, since t t′′ →∗b t

′ t′′.

Lemma 10.2. [[T ]]φ 6= ∅

Proof. The proof is by structural induction on T . If T is A, then the desired property holds
immediately, since x is in WN = [[A]]φ. So suppose T ≡ T1 ⇒ T2, for some T1 and T2. We
must exhibit some t ∈ [[T1 ⇒ T2]]φ. By the induction hypothesis applied to T2, there exists
some t′ ∈ [[T2]]φ. Now take λx : T1.t

′ for the required term t, where we assume x 6∈ FV(t′).
We just have to confirm that λx : T1.t

′ ∈ [[T1 ⇒ T2]]φ. So assume arbitrary t′′ ∈ [[T1]]φ,
and show (λx : T1.t

′) t′′ ∈ [[T2]]φ. By Lemma 10.1, it suffices to prove t′ ∈ [[T2]]φ, since
(λx : T1.t

′) t′′ →∗b t
′. But we are assuming t′ ∈ [[T2]]φ.
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Lemma 10.3. [[T ]]φ ⊆WN

Proof. The proof is again by structural induction on T , and is trivial when T is A. So
suppose T ≡ T1 ⇒ T2, and assume arbitrary t ∈ [[T1 ⇒ T2]]φ. We must show t ∈ WN.
By Lemma 10.2, we know there exists some term t′ ∈ [[T1]]φ. Then by the definition of the
interpretation of ⇒-terms, t t′ ∈ [[T2]]φ. By the induction hypothesis applied to T2, we then
have t t′ ∈WN. But this implies t ∈WN, as required.

Corollary 10.4. [[T ]]φ ∈ R

The above lemmas have proved that [[T ]]φ satisfies the three properties for membership in
R. In the next section, we will also need the following lemma, whose proof is routine and
omitted:

Lemma 10.5 (Semantic Substitution). [[[T/x]m]]φ = [[m]]φ[[[T ]]φ/x]

10.3. The Abstraction Theorem. In this section, we prove a remarkable theorem, from
which the normalization property for typable terms will follow as a corollary. For any mixed
terms m and m′, and any φ with FV(m) ⊆ dom(φ), we have:

Theorem 10.6 (Abstraction Theorem). m→a m′ =⇒ [[m]]φ ⊆ [[m′]]φ

Note that well-definedness of [[m′]]φ in the statement of the theorem follows from the assump-
tion about φ and the observation that abstract reduction cannot introduce new variables.

This theorem is remarkable because it reflects the essence of abstraction: the gathering of
different concrete entities under the same abstract one. The Abstraction Theorem shows
that abstract reduction is increasing the set of concrete terms which are collected under a
mixed (and so partially abstract) term. In the next section, we will see how to conclude
normalization from this theorem.

Proof of Theorem 10.6. It suffices to prove by structural induction on m̂ that for all φ and
for all m and m′ where m is a redex and m′ its contractum:

m̂[m]→a m̂[m′] −→ [[m̂[m]]]φ ⊆ [[m̂[m′]]]φ

Case: m̂ ≡ m1 m2, where the hole is in m1. The case where the hole is in m2 is similar,
so we omit it. To show the required [[m1[m] m2]]φ ⊆ [[m1[m

′] m2]]φ, consider arbitrary
t ∈ [[m1[m] m2]]φ. By the definition of the interpretation of applications, we must have
t1 ∈ [[m1[m]]]φ and t2 ∈ [[m2]]φ with t→∗b t1 t2. Now by the induction hypothesis applied to
m1 we have:

[[m1[m]]]φ ⊆ [[m1[m
′]]]φ

This implies t1 t2 ∈ [[m1[m
′] m2]]φ. From this, we obtain the desired t ∈ [[m1[m

′] m2]]φ by
the definition of the interpretation of applications.

Case: m̂ ≡ λx : T.m1, for some x, T , and m1, with the hole in m1. Consider an arbitrary
t ∈ [[λx : T.m1[m]]]φ. By the definition of the interpretation of λ-abstractions, this implies
that there exists a term t1 such that t→∗b λx : T.t1 and for all t′′ ∈ [[T ]]φ, we have [t

′′/x]t1 ∈
[[m1[m]]]φ[[[T ]]φ/x]. We must show t ∈ [[λx : T.m1[m

′]]]φ. By the definition of the interpretation

of λ-terms and Lemma 10.1, it suffices to prove (λx : T.t1) t′′ ∈ [[m1[m
′]]]φ[[[T ]]φ/x] for
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arbitrary t′′ ∈ [[T ]]φ. Again applying Lemma 10.1, we can see it suffices to prove [t′′/x]t1 ∈
[[m1[m

′]]]φ[[[T ]]φ/x]. This now follows by the induction hypothesis applied to context m1.

Case: m̂ = ∗. Now we must distinguish the two cases for an abstract reduction.

Case 1. Suppose that we have

λx : T.m →a T ⇒ [T/x]m

We must prove [[λx : T.m]]φ ⊆ [[T ⇒ [T/x]m]]φ. So assume arbitrary t ∈ [[λx : T.m]]φ,
and show t ∈ [[T ⇒ [T/x]m]]φ. To show that, it suffices to consider arbitrary t′′ ∈ [[T ]]φ,
and prove t t′′ ∈ [[[T/x]m]]φ. By the definition of the interpretation of λ-abstractions, we
have t →∗b λx : T.t′, for some t′, with [t′′/x]t′ ∈ [[m]]φ[[[T ]]φ/x] for all t′′ ∈ [[T ]]φ. Since

t t′′ →∗b [t′′/x]t′, it suffices by Lemma 10.1 just to prove [t′′/x]t′ ∈ [[[T/x]m]]φ. This follows
from the fact just derived, applying also Lemma 10.5.

Case 2. Suppose that we have

(T ⇒ m) T →a m

Assume an arbitrary t ∈ [[(T ⇒ m) T ]]φ. By the definition of the interpretation of applica-
tions, we then have that there exists t1 ∈ [[T ⇒ m]]φ and t2 ∈ [[T ]]φ such that t →∗b t1 t2.
We must show t ∈ [[m]]φ. By the definition of the interpretation of ⇒-terms, we obtain
t1 t2 ∈ [[m]]φ. By Lemma 10.1, this suffices to establish t ∈ [[m]]φ, since t→∗b t1 t2.

10.4. Concluding Normalization. Using the Abstraction Theorem, we can obtain the
main result that typable terms are normalizing. First, we need this helper lemma stating
that standard terms are in their own interpretations:

Lemma 10.7. Consider an arbitrary standard term t and assignment φ, as well as function
σ from variables to standard terms. Suppose also that for all x ∈ FV(t), we have σ(x) ∈
φ(x). Then we have σt ∈ [[t]]φ.

Proof. The proof is by structural induction on t. If t is a variable x, then we have σx ∈ φ(x)
by assumption. If t is of the form λx : T.t1, then the definition of the interpretation of mixed
terms tells us:

[[λx : T.t1]]φ =←∗b ({λx : T.t′ | ∀t′′ ∈ [[T ]]φ. [t
′′/x]t′ ∈ [[t1]]φ})

To show that σλx : T.t1 is itself a member of the set on the right-hand side of this equation, it
suffices to consider an arbitrary t′′ ∈ [[T ]]φ, and show [t′′/x](σt1) ∈ [[t1]]φ[[[T ]]φ/x]. Here we can

apply the induction hypothesis for t1, with σ[t′′/x] and φ[[[T ]]φ/x]. The two substitutions
still satisfy the required properties. Finally, if t is of the form t1 t2, the result easily
follows from the induction hypothesis applied to t1 and also to t2, and the definition of the
interpretation of applications.
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Theorem 10.8 (Normalization for Typable Terms). For all closed standard terms t and
types T , if t→∗a T , then t ∈WN.

Proof. By Lemma 10.7, we have t ∈ [[t]]∅. Then by iterated application of Theorem 10.6, we
know that [[t]]∅ ⊆ [[T ]]∅. By Lemma 10.3, [[T ]]∅ ⊆ WN. Putting these facts together, we get
this chain of relationships, which suffices:

t ∈ [[t]]∅ ⊆ [[T ]]∅ ⊆ WN

10.5. Summary of The Standard Proof. Here, we summarize Girard’s proof of strong
normalization, for purposes of comparison [12]. This proof is based on the usual judgment
Γ ⊢ t : T for STLC. One first defines an interpretation of types:

t ∈ Redb ⇔ t ∈ SN

t ∈ RedT→T ′ ⇔ ∀t′ ∈ RedT . (t t
′) ∈ RedT ′

This does not require use of a function φ as above (though the standard proof for System
F does). For this interpretation of types, one then proves these three properties, by mutual
structural induction on the type T mentioned in all three properties:

(1) RedT (t) ⇒ SN(t).
(2) RedT (t) ⇒ RedT (next(t)).
(3) If t is neutral, then RedT (next(t)) ⇒ RedT (t).

A term is neutral iff it is not a λ-abstraction. The third property implies that all the
variables are in RedT for every T . Finally, one derives the following different theorem in
place of the Abstraction Theorem:

Theorem 10.9 (Reducibility). Suppose {x1 : T1, . . . , xn : Tn} ⊢ t : T , and consider
arbitrary ti ∈ RedTi

, for all i ∈ {1, . . . , n}. Then [t1/x1, . . . , tn/xn] t ∈ RedT .

Now we can obtain as a corollary that Γ ⊢ t : T implies t ∈ SN, since Redb ⊆ SN by the
first property above, and a substitution σ replacing x by x satisfies the required condition,
since all variables are included in all sets RedT .

10.6. Discussion. The main difference in the rewriting-based development and the stan-
dard one is in deriving the Abstraction Theorem. The form of the theorem is completely
different from Theorem 10.9. One nice technical feature is that for the proof of the Abstrac-
tion Theorem, we did not need to apply a substitution to terms inhabiting interpretations
of types, as we did for Theorem 10.9. We still needed to use the idea of such a substitution,
but it appeared only in a simple helper lemma, namely Lemma 10.7. This is an advantage
of the rewriting-based version, since the substitution does not clutter up the proof of the
central result. One disadvantage of the rewriting-based version is that we needed the func-
tion φ and Lemma 10.5 – but this is not such a significant disadvantage, since those devices
are needed when we move to System F in the standard development anyway.
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11. Conclusion

We have seen how rewriting techniques can be used to develop the meta-theory of simple
types. Typing is treated as a small-step abstract reduction relation, and type safety, based
on type preservation and progress theorems, can be established by analysis of the interac-
tions between abstract and concrete reduction steps. A crucial ingredient of our approach
to type preservation, as defined by Theorem 5.1, is to have a confluent abstract reduction
relation. For simply typed lambda calculus, this was a trivial matter, but we saw a more
complex example, where applying automated confluence-checking tools developed in the
term-rewriting community was able to automate this part of the type preservation proof.
Confluence of the combination of abstract and concrete reduction for typable terms is an
easy corollary of type preservation (Theorem 5.3). We have also seen how to adapt a stan-
dard proof of normalization for simply typed terms, for the rewriting approach to typing.
For this proof, mixed terms are interpreted as sets of standard terms, and the crucial in-
sight is embodied in the Abstraction Theorem, which shows that those sets are enlarged by
reduction of the corresponding mixed terms.

There are many avenues for future work. First, the rewriting approach should be
applied to more advanced type systems, including ones with impredicative polymorphism.
Dependent type systems pose a particular challenge, because from the point of view of
abstract reduction, Π-bound variables must play a dual role. When computing a dependent
function type Πx : T. T ′ from an abstraction λx : T.t, we may need to abstract x to
T , as for STLC; but we may also need to leave it unabstracted, since with dependent
types, x is allowed to appear in the range type T ′. It would also be interesting to see if
there are consequences of the rewriting approach to typing when applied to proofs via the
Curry-Howard isomorphism. Theorem 10.6 (Abstraction) shows how the set of proofs in
the meaning of a mixed proof term (part proof and part formula) increases as the term is
abstracted. Certainly, the present methods yield the syntactic capability to incrementally
transform a proof to the theorem it proves. This could already be valuable in practice
for efficient proof checking, for example of large proofs produced by SAT or SMT solvers
(cf. [21]).

It would be interesting to go further in automating proofs of type preservation based
on the rewriting approach. While the Programming Languages community has invested
substantial effort in recent years on computer-checked proofs of properties like type safety
for programming languages (initiated particularly by the POPLmark Challenge [4]), there
is relatively little work on fully automatic proofs of type preservation (an example is [19]).
The rewriting approach could contribute to filling that gap, since the methods we used
above for analyzing interactions of abstract and concrete steps to prove type preservation
are similar to those used for proving confluence of combined reduction.

Our longer term goal is to use this approach to design and analyze type systems for
symbolic simulation. In program verification tools like Pex and KeY, symbolic simulation
is a central component [6, 23]. But these systems do not seek to prove that their symbolic-
simulation algorithms are correct. Indeed, the authors of the KeY system argue against
expending the effort to do this [7]. The rewriting approach promises to make it easier to
relate symbolic simulation, viewed as an abstract reduction relation, with the small-step
operational semantics.
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