
Submitted to LFMTP 2007

Signature Compilation for the
Edinburgh Logical Framework 1

Michael Zeller, Aaron Stump, and Morgan Deters

Computational Logic Group
Computer Science and Engineering Dept.

Washington University in St. Louis
St. Louis, Missouri, USA

Abstract

This paper describes the Signature Compiler, which can compile an LF signature
to a custom proof checker in either C++ or Java, specialized for that signature.
Empirical results are reported showing substantial improvements in proof-checking
time over existing LF checkers on benchmarks.

Key words: Edinburgh LF, signature compilation

1 Introduction

The Edinburgh Logical Framework (LF) provides a flexible meta-language for
deductive systems in several application domains [1]. A well-known example
is for proof-carrying code [2]. Another example is for proofs produced from
decision procedures [5]. A single LF type checker can be used to check proofs
in any deductive system defined by an LF signature (a list of typing declara-
tions and definitions). LF implementations like Twelf work in an interpreting
manner: first the LF signature is read, and then proofs can be checked with
respect to it [4]. This system description (LFMTP 2007 Category C) describes
the Signature Compiler (“sc”) tool, which supports a compiling approach to
LF type checking: an LF signature is translated to a custom proof checker
specialized for that signature. Signature compilation emits checkers that run
much faster than existing interpreting checkers on benchmark proofs, as shown
in Section 3, including proofs produced by a QBF solver for QBF benchmark
formulas. The Signature Compiler is publicly available from the “Software”
section of http://cl.cse.wustl.edu. For space reasons, this paper must
assume familiarity with LF and its Twelf syntax.

1 This work supported by the U.S. National Science Foundation under grant numbers CCF-
0448275 and CNS-0551697.

http://cl.cse.wustl.edu

Zeller, Stump, and Deters

o : type. trm : type.

== : trm -> trm -> o. imp : o -> o -> o.

%infix left 3 ==. %infix left 5 imp.

pf : o -> type.

impi : {p:o} {q:o} (pf p -> pf q) -> pf (p imp q).
mp : pf (P imp Q) -> pf P -> pf Q.

Fig. 1. Fragment of example LF signature

2 The Signature Compiler

The intended use of sc is for generating backend checkers, which are optimized
for the case when the proof successfully checks. Thus, sc does not report useful
error information for failed proofs. Also, backend checkers allow (untrusted)
proofs to contain additional definitions, but not additional declarations, which
might subvert the deductive system defined by the (trusted) signature. The
ideal case for use of sc is when many proofs expressed with respect to the
same signature need to be checked efficiently. In such a case, reuse of the
custom checker generated by sc makes up for the time needed for signature
compilation.

The Signature Compiler parses an LF signature in Twelf syntax, and gener-
ates all the source files required for a proof checker that checks proofs expressed
with respect to that signature. The Signature Compiler supports fully explicit
LF in Twelf syntax, without type-level λ-abstractions (a common restriction,
not essential for sc), and where constants declared in the signature must be
fully applied when used. The checkers emitted by the Signature Compiler,
but not sc itself, also support a form of implicit LF, in which holes (“ ”) can
be written in place of arguments to constants c from the signature, as long as
the values of those holes can be determined by unification in the higher-order
pattern fragment from the types of other arguments to c. Support for more
aggressive compression schemes must remain to future work (cf. [3]). The
Signature Compiler is written in around 3000 lines of C++ and can generate
custom checkers in both C++ and Java.

Figure 1 gives part of a standard LF signature for an example logic with
equality, implication, and universal quantification. This logic is used for the
benchmarks below. For space reasons, the figure focuses just on implication;
see the Appendix for the complete signature. Infix directives in Twelf syntax,
used after the declaration of “imp” in the figure, are supported by Signature
Compiler, and by the emitted checkers.

The Signature Compiler emits code for custom parsers for each signature
it compiles. Neither the emitted parsers nor sc itself relies on parser or lexer
generators, since such reliance would increase the size of the trusted computing

2

Zeller, Stump, and Deters

base, and make it more difficult to support infix directives in proofs. Simple
lexer generation – in particular, creating an inlined trie – is performed by sc
for lexing efficiency in the emitted checkers. The representation of terms is
optimized by generating code for custom classes for each expression declared
or defined in the signature. The parser generates instances of these classes
when parsing. Binding expressions (λ- and Π-expressions) are parsed in such
a way that each bound variable is represented as a distinct instance of a
DefExpr class, with all uses of the variable represented as references to that
same instance. In the C++ checkers, this is achieved using a trie rather than
an STL hash map, for performance reasons.

The Signature Compiler inlines the code needed to compute the type of
an application of a constant declared or defined in the signature. The ex-
pected types of arguments are hard-coded into the emitted checkers, and the
substitutions which must normally be performed at run-time to compute the
return type of an application of a dependently typed function are performed
instead during signature compilation. The emitted checkers thus completely
avoid the expensive operation of substitution when computing the return type
of an application of a constant declared or defined in the signature.

For example, the custom checker generated by sc produces the code shown
in Figures 2 and 3 for cases for == and impi in a switch statement over all
possible expressions. Note that since == cannot serve as a C++ or Java iden-
tifier, sc encodes this name using decimal ASCII character codes. Comments
document the connection to the original name. The function areEqualNuke

tests convertibility and additionally deletes the memory for the expressions it
is given. Since the two subexpressions of any == expression must be terms (of
type trm), the custom code for the imp case checks this condition. The type
o is then returned. The code for impi is the result of substitution during sig-
nature compilation, and hence directly computes the appropriate substituted
types.

The custom checker also has customized code for convertibility checking.
For example, consider the case of expanding defined constants of functional
type where they are applied. The exact expression resulting from substituting
the arguments for the λ-bound variables is known from the signature, and
thus code to build it directly is generated for the custom checker by Signature
Compiler.

3 Benchmarks

Results on two families of benchmarks are reported in this section, using both
explicit and implicit LF. The first are the EQ benchmarks, a family of proofs of
statements of the form “if f(a) = a then fn(a) = a”, for various sizes n. The
proofs are structured (via deliberate inefficiency) to use both hypothetical and
parametric reasoning, central aspects of the LF encoding methodology, as well
as β-reduction and defined constants. The second are the QBF benchmarks.

3

Zeller, Stump, and Deters

case /*===*/ X61o61o_EXPR: {
/*===*/ X61o61oExpr *e = (/*===*/ X61o61oExpr *)_e;
if((areEqualNuke(computeType(e->e1),

new /*trm=*/ XtrmExpr()) &&
areEqualNuke(computeType(e->e2),

new /*trm=*/ XtrmExpr())))
return new /*o=*/ XoExpr();

throw str;
}

Fig. 2. C++ custom type computation code for ==

case /*impi=*/ Ximpi_EXPR: {
/*impi=*/ XimpiExpr *e = (/*impi=*/ XimpiExpr *)_e;
DefExpr *innervar1 =

new DefExpr("na",new /*pf=*/ XpfExpr(e->e1),
new IdExpr("na"));

if((areEqualNuke(computeType(e->e1),
new /*o=*/ XoExpr()) &&

areEqualNuke(computeType(e->e2),
new /*o=*/ XoExpr()) &&

areEqualNuke(computeType(e->e3),
new PiExpr(innervar1,

new /*pf=*/ XpfExpr(e->e2)))))
return new /*pf=*/ XpfExpr(new /*imp=*/

XimpExpr(e->e1,e->e2));
throw str;

}

Fig. 3. C++ custom type computation code for impi

To obtain these, a simple Quantified Boolean Formula solver was written.
This solver reads benchmarks in the standard QDIMACS format, and emits
proof terms showing either that the formula evaluates to true or to false. Easy
benchmark formulas, obtained from www.qbflib.org are solved to generate
the proof terms.

Results on these two families of benchmarks are obtained using five check-
ers: the custom C++ and Java checkers generated by sc, Twelf, sc itself,
and the flea checker [5]. Twelf version 1.5R1 is included as a widely used
interpreting checker. The Signature Compiler itself implements an interpret-
ing checker, using similar infrastructure as the custom checker. Comparing
sc with the generated checker thus demonstrates the effect of the specializing
optimizations. The flea checker is a highly tuned interpreting LF checker,
which additionally implements context-dependent caching of computed types.
Such caching is not implemented in sc or the emitted checkers. Note that
the flea checker does not support implicit LF, infix directives (thus requiring
prefix forms of the benchmarks), or printing of parsing times. These checkers
are the only publicly available high-performance LF checkers the authors are
aware of.

The results for the EQ benchmarks are shown in Figures 4 and 5, and

4

www.qbflib.org

Zeller, Stump, and Deters

n size sc: C++ sc: Java Twelf sc (interp.) flea

100 464 KB 0.2 (0.1) 1.2 (1.0) 4.1 (1.5) 2.0 (0.5) 0.8

150 1.01 MB 0.4 (0.2) 2.4 (2.1) 8.7 (2.6) 4.1 (1.1) 1.6

200 1.77 MB 0.6 (0.3) 4.1 (3.5) 16.2 (5.2) 7.1 (1.9) 2.7

250 2.74 MB 0.9 (0.5) 6.2 (5.4) 26.8 (9.2) 10.9 (3.0) 4.2

300 3.92 MB 1.2 (0.7) 8.8 (7.6) 39.7 (13.1) 15.5 (4.2) 6.0

350 5.30 MB 1.7 (1.0) 11.9 (10.4) 52.3 (16.1) 21.0 (5.7) 8.2

Fig. 4. Runtime for EQ benchmarks (in seconds), explicit form

n size Twelf size sc sc: C++ sc: Java Twelf

100 80 KB 87 KB 0.06 (0.03) 0.31 (0.26) 1.4 (0.2)

150 166 KB 176 KB 0.11 (0.05) 0.54 (0.45) 3.0 (0.4)

200 281 KB 295 KB 0.17 (0.08) 0.87 (0.68) 5.3 (1.0)

250 426 KB 444 KB 0.23 (0.11) 1.25 (1.03) 7.8 (1.9)

300 602 KB 623 KB 0.31 (0.14) 1.78 (1.34) 11.7 (2.2)

350 807 KB 833 KB 0.41 (0.18) 2.28 (1.80) 16.7 (2.5)

Fig. 5. Runtime for EQ benchmarks (in seconds), implicit form

name size sc: C++ sc: Java Twelf sc (interp.) flea

cnt01e 2.2 MB 0.9 (0.6) 6.3 (5.8) 28.6 (7.0) 6.8 (2.2) 2.8

tree-exa2-10 2.7 MB 1.3 (0.8) 7.5 (6.9) 34.4 (8.5) 9.4 (2.8) 2.9

cnt01re 3.9 MB 1.7 (1.1) 10.7 (9.6) 56.7 (12.4) 12.3 (3.9) 5.1

toilet 02 01.2 9.7 MB 4.2 (2.7) 24.5 (22.0) 1809 (35.5) 30.6 (9.5) 10.5

1qbf-160cl.0 16.6 MB 6.4 (4.6) 41.3 (38.2) timeout 44.5 (16.2) 14.6

tree-exa2-15 32.5 MB 15.9 (9.7) 86.1 (75.9) timeout 114.1 (33.6) 25.8

toilet 02 01.3 96.4 MB 42.9 (27.8) 277.7 (241.2) timeout 313.0 (99.0) 105.2

Fig. 6. Runtime on QBF benchmarks (in seconds), explicit form

for the QBF benchmarks in Figures 6 and 7. Parsing times, where available,
are shown in parentheses. Experiments are averages of three runs on a 2GHz
Pentium 4 with 1.5 GB main memory. The C++ and Java checkers emitted
by sc were compiled with g++ and gcj, respectively, version 3.4.5. For the
QBF benchmarks, a timeout of 30 minutes was imposed (on the toilet 02 01.2
benchmark, Twelf finished in just under that time on one run, so the average
time for three runs is included). Note that the redundancy in the QBF explicit
benchmarks explains flea’s good performance.

5

Zeller, Stump, and Deters

name size Twelf size sc sc: C++ sc: Java Twelf

cnt01e 167 KB 184 KB 0.2 (0.1) 1.5 (1.4) 7.2 (0.6)

tree-exa2-10 345 KB 392 KB 0.4 (0.1) 2.1 (1.8) 8.9 (0.7)

cnt01re 250 KB 274 KB 0.3 (0.1) 1.9 (1.6) 12.3 (0.9)

toilet 02 01.2 0.9 MB 1.1 MB 1.0 (0.3) 4.1 (3.3) 38.0 (2.7)

1qbf-160cl.0 1.4 MB 1.5 MB 0.8 (0.4) 4.9 (4.6) 197.7 (4.5)

tree-exa2-15 3.9 MB 4.5 MB 4.7 (1.3) 14.4 (10.5) timeout

toilet 02 01.3 7.6 MB 8.5 MB 9.4 (2.4) 28.1 (19.3) timeout

Fig. 7. Runtime on QBF benchmarks (in seconds), implicit form

4 Conclusion

The Signature Compiler is the first tool of its kind, supporting compilation of
an LF signature to optimized C++ or Java backend checkers specialized for
that signature. Results on two families of benchmarks, including one family of
proofs of QBF benchmarks, show order-of-magnitude performance improve-
ments for emitted checkers over Twelf and sc itself, and substantial improve-
ments over the flea checker. A form of implicit arguments is supported by
sc, offering further space and performance improvements. Future work in-
cludes further support for proofs from decision procedures: the second author
is proposing LF, backed by the Signature Compiler, as appropriate technology
for a standard proof format for the SMT-LIB (Satisfiability Modulo Theories
Library) initiative.

The authors wish to thank the anonymous reviewers for their comments
on the paper.

References

[1] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

[2] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 106–119, January 1997.

[3] G. Necula and P. Lee. Efficient representation and validation of proofs. In 13th
Annual IEEE Symposium on Logic in Computer Science, pages 93–104, 1998.

[4] F. Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Conference on
Automated Deduction, 1999.

[5] A. Stump and D. Dill. Faster Proof Checking in the Edinburgh Logical
Framework. In 18th International Conference on Automated Deduction, pages
392–407, 2002.

6

Zeller, Stump, and Deters

o : type.
trm : type.

== : trm -> trm -> o.
imp : o -> o -> o.
all : (trm -> o) -> o.
f: trm -> trm.

%infix left 3 ==.
%infix left 5 imp.

pf : o -> type.

refl : {x:trm} pf (x == x).
symm : {x:trm} {y:trm} pf (x == y) -> pf (y == x).
trans : {x:trm} {y:trm} {z:trm}

pf (x == y) -> pf (y == z) -> pf (x == z).
congf : {x:trm} {y:trm} pf (x == y) -> pf ((f x) == (f y)).

mp : {p:o} {q:o} pf (p imp q) -> pf p -> pf q.
impi : {p:o} {q:o} (pf p -> pf q) -> pf (p imp q).

alli : {P:trm -> o} ({x:trm} pf (P x)) -> pf (all P).
alle : {P:trm -> o} {t:trm} pf (all P) -> pf (P t).

a : trm.
b : trm.
c : trm.

g : trm -> trm = [x:trm] f x.

Fig. A.1. LF signature for the EQ benchmarks

7

Zeller, Stump, and Deters

pol : type.
pos : pol.
neg : pol.

opp : pol -> pol -> type.
opp1 : opp pos neg.
opp2 : opp neg pos.

o : type.

conn : pol -> o -> o -> o.
not : o -> o.
quant : pol -> (o -> o) -> o.
bval : pol -> o.

Equiv : o -> o -> type.

%infix right 3 Equiv.

refl : {p:o} p Equiv p.
trans : {p:o}{q:o}{r:o} p Equiv q -> q Equiv r -> p Equiv r.

connc : {b:pol} {p1:o} {p2:o} {q1:o} {q2:o}
p1 Equiv p2 -> q1 Equiv q2 -> conn b p1 q1 Equiv conn b p2 q2.

connz1 : {b:pol} {bb:pol} opp b bb ->
{q:o} conn b (bval bb) q Equiv (bval bb).

connz2 : {b:pol} {bb:pol} opp b bb ->
{q:o} conn b q (bval bb) Equiv (bval bb).

connu1 : {b:pol} {q:o} conn b (bval b) q Equiv q.
connu2 : {b:pol} {q:o} conn b q (bval b) Equiv q.

nott : not (bval pos) Equiv (bval neg).
notf : not (bval neg) Equiv (bval pos).

quantz : {b:pol}{bb:pol} opp b bb ->
{a:pol}{p:o -> o} p (bval a) Equiv (bval bb) ->
quant b p Equiv (bval bb).

quantu : {b:pol}{p:o -> o}
p (bval pos) Equiv (bval b) ->
p (bval neg) Equiv (bval b) ->
quant b p Equiv (bval b).

quantn : {b:pol} {p1:o} quant b ([x:o]p1) Equiv p1.
quantc : {b:pol}{p1:o -> o}{p2:o -> o}

({x:o} (p1 x) Equiv (p2 x)) ->
quant b p1 Equiv quant b p2.

Fig. A.2. LF signature for the QBF benchmarks

8

	Introduction
	The Signature Compiler
	Benchmarks
	Conclusion
	References

