Call-By-Name Normalization for System F

Aaron Stump

November 10, 2014

1 Introduction

This note gives a proof that call-by-name reduction is normalizing for unannotated System F (polymorphic lambda calculus), and considers a few consequences. System F is defined with annotated terms, where λ -bound variables must be declared with their types. So we have $\lambda x : T.t$ instead of just $\lambda x.t$. For metatheoretic analysis, I prefer to work with unannotated terms. This system (with unannotated terms) is also called $\lambda 2$.

2 Syntax

term variables x		
type variables X		
$terms \ t$::=	$x \mid \lambda x.t \mid t \; t'$
types T	::=	$X \mid T \to T' \mid \forall X.T$

3 Typing

A typing context Γ declares free term and type variables:

Typing context $\Gamma ::= \cdot \mid \Gamma, x : T \mid \Gamma, X : \star$

We treat Γ as a function, and write $\Gamma(x) = T$ to mean that Γ contains a declaration x : T. We will implicitly require that Γ does not declare any variable x twice. Variables can be implicitly renamed in λ -terms to make it possible to enforce this requirement. The typing rules are in Figure 1. To ensure that types are well-formed, we use some extra rules, called *kinding* rules, in Figure 2.

$$\begin{array}{ll} \frac{\Gamma(x) = T}{\Gamma \vdash x : T} & \frac{\Gamma, x : T \vdash t : T'}{\Gamma \vdash \lambda x.t : T \to T'} & \frac{\Gamma \vdash t : T_1 \to T_2 \quad \Gamma \vdash t' : T_1}{\Gamma \vdash t : T_2} \\ \\ \frac{\Gamma, X : \star \vdash t : T}{\Gamma \vdash t : \forall X.T} & \frac{\Gamma \vdash t : \forall X.T \quad \Gamma \vdash T' : \star}{\Gamma \vdash t : [T'/X]T} \end{array}$$

Figure 1: Typing rules for unannotated System F

$$\frac{\Gamma(X) = \star}{\Gamma \vdash X : \star} \qquad \frac{\Gamma \vdash T_1 : \star \quad \Gamma \vdash T_2 : \star}{\Gamma \vdash T_1 \to T_2 : \star} \qquad \frac{\Gamma, X : \star \vdash T : \star}{\Gamma \vdash \forall X.T : \star}$$

Figure 2: Kinding rules for unannotated System F

$$\begin{split} \llbracket X \rrbracket_{\rho} &= \rho(X) \\ \llbracket T_1 \to T_2 \rrbracket_{\rho} &= \{ t \in \mathcal{N} \mid \forall t' \in \llbracket T_1 \rrbracket_{\rho}. \ t \ t' \in \llbracket T_2 \rrbracket_{\rho} \} \\ \llbracket \forall X.T \rrbracket_{\rho} &= \bigcap_{R \in \mathcal{R}} \llbracket T \rrbracket_{\rho[X \mapsto R]} \end{split}$$

Figure 3: Reducibility semantics for types

4 Semantics for types

Figure 3 gives a compositional semantics $[\![T]\!]_{\rho}$ for types. The function ρ gives the interpretations of free type variables in T. Each free type variable is interpreted as a *reducibility candidate*, and write ρ only for functions mapping type variables X to reducibility candidates. To define what a reducibility candidate is: let us denote the set of <u>closed</u> terms which normalize using call-by-name reduction as \mathcal{N} . We will write \rightsquigarrow for call-by-name reduction. Then a reducibility candidate R is a set of terms satisfying the following requirements:

- $R \subseteq \mathcal{N}$
- If $t \in R$ and $t' \rightsquigarrow t$, then $t' \in R$

The set of all reducibility candidates is denoted \mathcal{R} .

Lemma 1 (\mathcal{R} is a cpo). The set \mathcal{R} ordered by subset forms a complete partial order, with greatest element \mathcal{N} and greatest lower bound of a nonempty set of elements of \mathcal{R} given by intersection.

Proof. \mathcal{N} satisfies both requirements for a reducibility candidate, and since one of those requirements is being a subset of \mathcal{N} , it is clearly the largest such set to do so. Let us prove that the intersection of a nonempty set S of reducibility candidates is still a reducibility candidate. Certainly if the members of S are subsets of \mathcal{N} then so is $\bigcap S$. For the second property: assume an arbitrary $t \in \bigcap S$ with $t' \rightsquigarrow t$, and show $t' \in \bigcap S$. For the latter, it suffices to show $t' \in R$ for every $R \in S$. Consider an arbitrary such R. From $t \in \bigcap S$ and $R \in S$, we have $t \in R$. Then since R is a reducibility candidate, $t \in R$ and $t' \rightsquigarrow t$ implies $t' \in R$, .

Lemma 2 (The semantics of types computes reducibility candidates). If $\rho(X)$ is defined for every free type variable of T, then $[\![T]\!]_{\rho} \in \mathcal{R}$.

Proof. The proof is by induction on the structure of the type. If T is a type variable X, then by assumption, $\rho(X)$ is a reducibility candidate, and this is the value of $[T]_{\rho}$.

If T is an arrow type $T_1 \to T_2$, we must prove the two properties listed above for being a reducibility candidate. Certainly $[\![T]\!]_{\rho} \subseteq \mathcal{N}$, because the semantics of arrow types requires this explicitly. Now suppose that $t \in [\![T_1 \to T_2]\!]_{\rho}$ and $t' \rightsquigarrow t$. We must show $t' \in [\![T_1 \to T_2]\!]_{\rho}$. Since t is normalizing and $t' \rightsquigarrow t$, we know that t' is also normalizing (there is a reduction sequence from t' to t and from t to a normal form). So let us assume an arbitrary $t'' \in [\![T_1]\!]_{\rho}$, and show that $t' t'' \in [\![T_2]\!]_{\rho}$. Since t' $\rightsquigarrow t$, by the definition of call-by-name reduction, we have

$$t' t'' \rightsquigarrow t t''$$

Since $t \in [\![T_1 \to T_2]\!]_{\rho}$, we know by the semantics of types that $t t'' \in [\![T_2]\!]_{\rho}$, since $t'' \in [\![T_1]\!]_{\rho}$. By the IH, $[\![T_2]\!]_{\rho}$ is a reducibility candidate. So since $t' t'' \rightsquigarrow t t''$ and $t t'' \in [\![T_2]\!]_{\rho}$, we also have $t' t'' \in [\![T_2]\!]_{\rho}$. This was all we had to prove in this case.

Finally, if T is a universal type $\forall X.T'$, then by IH, the set $\llbracket T' \rrbracket_{\rho[X \mapsto R]}$ is a reducibility candidate for all $R \in \mathcal{R}$. Since \mathcal{R} is a complete partial order, $\bigcap_{R \in \mathcal{R}} \llbracket T' \rrbracket_{\rho[X \mapsto R]}$ is then also a reducibility candidate.

5 Soundness of Typing Rules

The goal of this section is to prove that terms which can be assigned a type using the rules of Figure 1 are normalizing. We will actually prove a stronger statement, based on an interpretation of typing judgments. First, we must define an interpretation $[\Gamma]$ for typing contexts Γ . This interpretation will be a set of pairs (σ, ρ) , where ρ is, as above, a function mapping type variables to reducibility candidates; and σ maps term variables to terms. The definition is by recursion on the structure of Γ :

$$\begin{array}{lll} (\sigma,\rho) \in \llbracket x:T,\Gamma \rrbracket & \Leftrightarrow & \sigma(x) \in \llbracket T \rrbracket_{\rho} & \wedge & (\sigma,\rho) \in \llbracket \Gamma \rrbracket \\ (\sigma,\rho) \in \llbracket X:*,\Gamma \rrbracket & \Leftrightarrow & \rho(x) \in \mathcal{R} & \wedge & (\sigma,\rho) \in \llbracket \Gamma \rrbracket \\ (\sigma,\rho) \in \llbracket \cdot \rrbracket \end{array}$$

In the statement of the theorem below, we write σt to mean the result of simultaneously substituting $\sigma(x)$ for x in t, for all x in the domain of σ .

Lemma 3. Suppose $(\sigma, \rho) \in \llbracket \Gamma \rrbracket$. If $t \in \llbracket T \rrbracket_{\rho}$, then $(\sigma[x \mapsto t], \rho) \in \llbracket \Gamma, x : T \rrbracket$. Also, if $R \in \mathcal{R}$, then $(\sigma, \rho[x \mapsto R]) \in \llbracket \Gamma, X : * \rrbracket$.

Proof. The proof of the first part is by induction on Γ . If $\Gamma = \cdot$, then to show $(\sigma[x \mapsto t], \rho) \in \llbracket \cdot, x : T \rrbracket$, it suffices to show $t \in \llbracket T \rrbracket_{\rho}$, which holds by assumption. If $\Gamma = y : T', \Gamma'$, then we have $(\sigma, \rho) \in \llbracket \Gamma' \rrbracket$ by the definition of $\llbracket \Gamma \rrbracket$, and we may apply the IH to conclude $(\sigma[x \mapsto t], \rho) \in \llbracket \Gamma', x : T \rrbracket$, from which we can conclude the desired $(\sigma[x \mapsto t], \rho) \in \llbracket \Gamma, x : T \rrbracket$, again by the definition of $\llbracket \Gamma \rrbracket$. Similar reasoning applies if $\Gamma = X : \star, \Gamma'$. The proof of the second part of the lemma is exactly analogous.

Theorem 4 (Soundness of typing rules with respect to the semantics). If $\Gamma \vdash t : T$, then for all $(\sigma, \rho) \in \llbracket \Gamma \rrbracket$, we have $\sigma t \in \llbracket T \rrbracket_{\rho}$.

Proof. The proof is by induction on the structure of the assumed typing derivation. In each case, we will implicitly assume an arbitrary $(\sigma, \rho) \in [\Gamma]$.

 $\underline{\text{Case:}}$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x:T}$$

We proceed by inner induction on Γ . If Γ is empty, then $\Gamma(x) = T$ is false, and this case cannot arise. Suppose Γ is of the form $x : T, \Gamma'$. Then $\sigma(x) \in [\![T]\!]_{\rho}$ by definition of $[\![\Gamma]\!]$, which suffices to prove the conclusion. Suppose Γ is of the form $y : T, \Gamma'$, where $y \neq x$, or of the form $X : *, \Gamma'$. Then $\Gamma'(x) = T$ and $(\sigma, \rho) \in [\![\Gamma']\!]$, and we use the induction hypothesis to conclude $\sigma x \in [\![T]\!]_{\rho}$.

Case:

$$\frac{\Gamma, x: T \vdash t: T'}{\Gamma \vdash \lambda x.t: T \to T')}$$

To prove $(\lambda x.\sigma t) \in [T \to T']_{\rho}$, it suffices to assume an abitrary $t' \in [T]_{\rho}$ and prove $(\lambda x.\sigma t)$ $t' \in [T']_{\rho}$. Since $[T']_{\rho}$ is a reducibility candidate, it suffices to prove $[t'/x]\sigma t \in [T']_{\rho}$, since $(\lambda x.\sigma t)$ $t' \to [t'/x](\sigma t)$. But if

we let $\sigma' = \sigma[x \mapsto t']$, then we have $(\sigma', \rho) \in \llbracket \Gamma, x : T \rrbracket$ by Lemma 3, so we may apply the IH to conclude $\sigma' t \in \llbracket T' \rrbracket_{\rho}$, as required.

Case:

$$\frac{\Gamma \vdash t: T_1 \to T_2 \quad \Gamma \vdash t': T_1}{\Gamma \vdash t \ t': T_2}$$

By the IH, $\sigma t \in [T_1 \to T_2]_{\rho}$ and $\sigma t' \in [T_1]_{\rho}$. By the semantics of arrow types, this immediately implies $(\sigma t) (\sigma t') \in [T_2]_{\rho}$, as required.

Case:

$$\frac{\Gamma, X : \star \vdash t : T}{\Gamma \vdash t : \forall X.T}$$

We must prove $\sigma t \in [\![\forall X.T]\!]_{\rho}$. By the semantics of universal types, it suffices to assume an arbitrary $R \in \mathcal{R}$, and prove $\sigma t \in [\![T]\!]_{\rho[X \mapsto R]}$. But this follows by the IH, which we can apply because $(\sigma, \rho[X \mapsto R]) \in [\![\Gamma, X : \star]\!]$, by Lemma 3.

Case:

$$\frac{\Gamma \vdash t : \forall X.T \quad \Gamma \vdash T' : \star}{\Gamma \vdash t : [T'/X]T}$$

By the IH, we know $\sigma t \in [\![\forall X.T]\!]_{\rho}$, which by the semantics of universal types is equivalent to

$$\sigma t \in \bigcap_{R \in \mathcal{R}} T_{\rho[X \mapsto R]} \tag{1}$$

Since $(\sigma, \rho) \in \llbracket \Gamma \rrbracket$, we may easily observe that ρ is defined for all the free type variables of T'. So by Lemma 2, $\llbracket T' \rrbracket_{\rho} \in \mathcal{R}$. From the displayed formula above (1), we can conclude $\sigma t \in \llbracket T \rrbracket_{\rho[X \mapsto \llbracket T' \rrbracket_{\rho}]}$. Now we must apply the following lemma, whose easy proof by induction on T we omit, to conclude $\sigma t \in \llbracket [T'/X]_{\rho}$.

Lemma 5. $[[T'/X]T]]_{\rho} = [T]]_{\rho[X \mapsto T']}$