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Abstract

Many applications of automated deduction require reasoning modulo some form
of integer arithmetic. Unfortunately, theory reasoning support for the integers in
current theorem provers is sometimes too weak for practical purposes. In this paper
we propose a novel calculus for a large fragment of first-order logic modulo Linear
Integer Arithmetic (LIA) that overcomes several limitations of existing theory rea-
soning approaches. The new calculus — based on the Model Evolution calculus, a
first-order logic version of the propositional DPLL procedure — supports restricted
quantifiers, requires only a decision procedure for LIA-validity instead of a com-
plete LIA-unification procedure, and is amenable to strong redundancy criteria.
We present a basic version of the calculus and prove it sound and (refutationally)
complete.

1 Introduction

Many applications of automated deduction require reasoning modulo some form of in-
teger arithmetic. Unfortunately, theory reasoning support for the integers in current
theorem provers is sometimes too weak for practical purposes. In particular, the family
of Satisfiability Modulo Theories solvers lack support for quantifiers and resort to incom-
plete or inefficient heuristics to deal with quantified formulas [GBT07, e.g.]. Also, theory
reasoning techniques developed within first-order theorem proving are often impracti-
cal as they require the enumeration of complete sets of theory unifiers (in particular
those in the tradition of Stickel’s Theory Resolution [Sti85]) or feature only weak or no
redundancy criteria (e.g., Bürckert’s Constraint Resolution [Bür90]).
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2 1 Introduction

In this paper we propose a novel refutation calculus for a fragment of first-order logic
modulo Linear Integer Arithmetic (LIA) that overcomes these problems. The fragment
is a clause logic with restricted quantifiers whose language extends that of LIA with
free constant and predicate symbols, and whose models are arbitrary expansions of the
integers structure to those free symbols.

The quantifier restrictions are as follows: every (universal) variable is restricted to
range over a bounded below interval of Z (such as, for instance, N), while every free
constant is restricted to range over a finite interval of Z.

The exclusion of free function symbols of non-zero arity and the restriction of free
constant symbols to a finite range make (entailment in) the logic recursively enumerable,
and semi-decided by the calculus we present here. The restriction of the variables on
the other hand is not essential. It is used here only because it simplifies the treatment
of the calculus. Further restricting the variables to finite intervals makes however the
logic decidable, and our calculus terminating.

In spite of the restrictions, the logic is quite powerful. For instance, functions with a
finite range can be easily encoded into it. This makes the logic particularly well-suited
for applications that deal with bounded domains, such as, for instance, bounded model
checking and planning. SAT-based techniques, based on clever reductions of BMC and
planning to SAT, have achieved considerable success in the past, but they do not scale
very well due to the size of the propositional formulas produced. It has been argued
and shown by us and others [BFdNT07, NP07] that this sort of applications could
benefit from a reduction to a more powerful logic for which efficient decision procedures
are available. That work had proposed the function-free fragment of clause logic as a
candidate. This paper takes that proposal a step further by adding integer constraints
to the picture. The ability to reason natively about the integers can provide a reduction
in search space even for problems that do not originally contain integer constraints. The
following simple example from finite model reasoning demonstrates this:1

a : [1..100] P (a) ¬P (x)← 1
.
≤ x ∧ x

.
≤ 100 .

The clause set above is unsatisfiable because the interval declaration a : [1..100] for the
constant a together with the unit clause P (a) permit only models that satisfy one of
P (1), . . . , P (100). Such models however falsify the third clause. Finite model finders,
e.g., need about 100 steps to refute the clause set, one for each possible value of a. Our
ME(LIA) calculus, on the other hand, reasons directly with integer intervals and allows
a refutation in O(1) steps. See Section 2 for an in-depth discussion of another example.

The calculus we propose relies on a decision procedure for the full fragment of LIA
instead of a complete enumerator of LIA-unifiers. It is derived from the Model Evolution
calculus (ME) [BT03], a first-order logic version of the propositional DPLL procedure.
In ME, the main data structure is the context, a finite set of literals providing a compact
representation of certain Herbrand interpretations serving as candidate models for the
input clause set. The new calculus, ME(LIA), extends ME’s contexts to sets of literals

1The predicate symbol
.

≤ denotes less than or equal on integers.
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with LIA constraints, representing expansions of the integers structure by free predicate
and constant symbols. The crucial insight that leads from ME to ME(LIA) lies in the use
of the ordering < on integers in ME(LIA) instead of the instantiation ordering on terms
in ME. This then allows ME(LIA) to work with concepts over integers that are similar
to concepts used in ME over free terms. For instance, it enables a strong redundancy
criteria that is formulated, ultimately, as certain constraints over LIA expressions.

In this paper we introduce the main ideas of the new calculus and discuss its theoret-
ical properties. For simplicity and space constraints, we present only a basic version of
the calculus, which is designed to use a minimal number of inference rules and treat the
LIA decision procedure as an oracle, disregarding its (high) computational complexity.
We are currently working on an enhanced version with additional rules that relies on a
customized quantifier elimination procedure for LIA and efficient solvers for its universal
fragment to reduce the cost of solving LIA constraints. The enhanced calculus will be
described in a follow-up paper.

Related work. Most of the related work has been carried out in the framework of the
resolution calculus. One of the earliest related calculi is theory resolution [Sti85]. In our
terminology, theory resolution requires the enumeration of a complete set of solutions
of constraints. The same applies to various “theory reasoning” calculi introduced later
[Bau98, GK06]. In contrast, in ME(LIA) all background reasoning tasks can be reduced
to satisfiability checks of (quantified) constraint formulas. This weaker requirement
facilitates the integration of a larger class of solvers (such as quantifier elimination
procedures) and leads to potentially far less calls to the background reasoner. For
an extreme example, the clause ¬(0 < x) ∨ P (x) has, by itself, infinitely many most
general LIA-unifiers (the theory reasoning analogous of most general unifiers), namely
{x 7→ 1}, {x 7→ 2}, . . ., the most general solutions of the constraint (0 < x) with respect
to the term instantiation ordering. Thus, any calculus based on the computation of
complete sets of (most general) solutions of LIA-constraints may need to consider all of
them. In contrast, in ME(LIA), or in other calculi based on satisfiability alone, notably
Bürckert’s constrained resolution [Bür90], it is enough just to check that a constraint
like (0 < x) is LIA-satisfiable.

Constrained resolution is actually more general than ME(LIA), as it admits back-
ground theories with (infinitely, essentially enumerable) many models, as opposed to the
single fixed model that ME(LIA) works with.2 On the other hand, constraint resolution
does not admit free constant or function symbols—unless they are considered as part of
the background theory, which is pointless since specialized background theory reasoners
do not accept free symbols. The most severe drawback of constraint resolution, however,
is the lack of redundancy criteria.

The importance of powerful redundancy criteria has been emphasized in the develop-
ment of the modern theory of resolution in the 1990s [NR01]. With slight variations they
carry over to hierarchical superposition [BGW94], a calculus that is related to constraint
resolution. The recent calculus in [KV07] integrates dedicated inference rules for Linear

2Extending ME(LIA) correspondingly is future work.



4 2 Calculus Preview

Rational Arithmetic into superposition. In [BT03, e.g.] we have described conceptual
differences between ME, further instance based methods [Bau07] and other (resolution)
calculi. Many of the differences carry over to the constraint-case, possibly after some
modifications. For instance, ME(LIA) explicitly, like ME, maintains a candidate model,
which gives rise to a redundancy criterion different to the ones in superposition calculi.
Also it is known that instance-based methods decide different fragments of first-order
logic, and the same holds true for the constraint-case.

Over the last years, Satisfiability Modulo Theories has become a major paradigm for
theorem proving modulo background theories. In one of its main approaches, DPLL(T ),
a DPLL-style SAT-solver is combined with a decision procedure for the quantifier-free
fragment of the background theory T [NOT06]. DPLL(T ) is essentially limited to the
ground case. In fact, addressing this intrinsic limitation by lifting DPLL(T ) to the
first-order level is one of the main motivations for the ME(LIA) calculus (much like ME

was motivated by the goal of lifting the propositional DPLL procedure to the first-order
level while preserving its good properties). At the current stage of development the
core of the procedure—the Split rule—and the data structures are already lifted to the
first-order level. We are working on an enhanced version with additional rules, targeting
efficiency improvements. With these rules then ME(LIA) can indeed be seen as a proper
lifting of DPLL(T ) to the first-order level (within recursion-theoretic limitations).

2 Calculus Preview

It is instructive to discuss the main ideas of the ME(LIA) calculus with a simple example
before defining the calculus formally. Consider the following two unit constrained clauses
(formally defined in Section 3):3

P (x)← a
.
< x (1)

¬P (x)← x
.= b (2)

where a, b are free constants, which we call parameters, x, y are (implicitly universally
quantified) variables, and a

.
< x and x

.= b are the respective constraints of clause (1)
and (2). The restriction that all parameters range over some finite integer domain is
achieved with the global constraints a : [1..10], b : [1..10]. Informally, clause (1) states
that there is a value of a in {1, . . . , 10} such that P (x) holds for all integers x greater
than a. Similarly for clause (2).

The clause set above is satisfiable in any expansion of the integers structure Z to
{a, b, P} that maps a, b into {1, . . . , 10} with a ≥ b. The calculus will discover that
and compute a data structure that denotes exactly all these expansions. To see how
this works, it is best to describe the calculus’ main operations using a semantic tree
construction, illustrated in Figure 1. Each branch in the semantic tree denotes a finite
set of first-order interpretations that are expansions of Z. These interpretations are the

3The predicate symbol
.
= denotes integer equality and 6 .= stands for ¬(· .= ·); similarly for

.
<.
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b : [1..10]
a : [1..10]

(a) Initial tree

¬P (x) | a
.
< xP (x) | a

.
< x

b : [1..10]
a : [1..10]

(1)

(b) (1) causes Split

(1)

a+ 1
.
= b a+ 1 6 .= b

P (x) | a
.
< x ¬P (x) | a

.
< x

b : [1..10]
a : [1..10]

(2)

(c) (2) causes Domain Split

(1)

a+ 1
.
= b a+ 1 6 .= b

P (x) | a
.
< x ¬P (x) | a

.
< x

b : [1..10]
a : [1..10]

P (x) |¬P (x) |
x
.
= b ∧ a

.
< x x

.
= b ∧ a

.
< x

(2)

(2)

(d) (2) causes Split

(1)

a+ 1
.
= b a+ 1 6 .= b

P (x) | a
.
< x ¬P (x) | a

.
< x

b : [1..10]
a : [1..10]

P (x) |¬P (x) |
x
.
= b ∧ a

.
< x x

.
= b ∧ a

.
< x

(2)

(2)

(1)

a
.
< b a 6

.
< b

(e) (1) causes Domain Split

Figure 1: Derivation example. Closed branches are marked with the number of the
clause used to close them.

key to understanding the working of the calculus. The calculus’ goal is to construct a
branch denoting a set of interpretations that are each a model of the given clause set
and the global parameter constraints, or to show that there is no such model.

In the example in Figure 1a, the initial single-node tree denotes all interpretations
that interpret a and b over {1, . . . , 10} and falsify by default all ground atoms of the
form P (n) where n is an integer constants (e.g., P (−1), P (4), . . .). Each of these (100)
interpretations falsifies clause (1). The calculus detects that and tries to fix the problem
by changing the set of interpretations in two essentially complementary ways. It does
that by computing a context unifier and applying the Split inference rule (both defined
later) which extends the tree as in Figure 1b. With the addition of the constrained
literal P (x) | a

.
< x, the left branch of the new tree now denotes all interpretations that

interpret a and b as before but satisfy P (n) only for values of n greater than a.
The right branch in Figure 1b still denotes the same set of interpretations as in the

original branch. However, the presence of ¬P (x) | a
.
< x now imposes a restriction

on later extensions of the branch. To explain how, we must observe first that in the
calculus the set of solutions of any constraint (which are integer tuples) is a well-founded
poset. Hence, each satisfiable constraint has minimal solutions. Now, if a branch in the
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semantic tree contains a literal L(x1, . . . , xk) | c where c is a satisfiable constraint over
the variables x1, . . . , xn, each associated interpretation I satisfies L(n1, . . . , nk) where
(n1, . . . , nk) is one of the minimal solutions of c in I. Further extensions of the branch
must maintain L(n1, . . . , nk) satisfied. This minimal solution is commited to at the
time the literal is added to the semantic tree. In the right branch of Figure 1b a
(unique) minimal solution of a

.
< x is a + 1 for all interpretations. This entails that

¬P (a + 1) is permanently valid in the branch in the sense that (i) ¬P (a + 1) holds in
every interpretation of the branch and (ii) no extensions of the branch are allowed to
change that. As a consequence, the right branch permanently falsifies clause (1), and
so it can be closed.

Similarly, P (a + 1) is permanently valid in the left branch of Figure 1b.4 In inter-
pretations of the branch where a + 1 = b this is a problem because there clause (2) is
falsified. Since the branch also has interpretations where a+ 1 6= b, the calculus makes
progress by splitting on a + 1 .= b. This is done with the Domain Split rule, leading
to the tree in Figure 1c. The leftmost branch there denotes only interpretations where
a + 1 = b. That branch can be closed because it permanently falsifies clause (2). It
is worth pointing out that domain splits like the above, identifying “critical” cases of
parameter assignments, can be computed deterministically. They do not need not be
guessed.

The branch ending in a+1 6 .= b still contains interpretations that falsify the clause set.
For instance, those that map a to 2 and b to 4, say, will satisfy P (4), and so falsify clause
(2). This situation is identified by conjoining the constraint a

.
< x in P (x) | a

.
< x and

the constraint x .= b in clause (2). The obtained constraint x .= b ∧ a
.
< x is satisfiable

under the parameter valuation {a 7→ 2, b 7→ 4}. Moreover, its minimal solution differs
from the minimal solution of the constraint in P (x) | a

.
< x. This makes the Split rule

applicable with the literal ¬P (x) | x .= b∧a
.
< x, which yields the tree in Figure 1d. The

branch ending in P (x) | x .= b ∧ a
.
< x can be closed, with clause (2), for permanently

satisfying P (b).5

Moving to the branch ending in ¬P (x) | x .= b∧a
.
< x, let us consider its interpreta-

tions where a < b. As defined later, those interpretations satisfy P (a+ 1), . . . , P (b− 1)
and falsify, among others, P (b), P (b + 1) and so on. This is a consequence of the fact
that when a < b the minimal solution of the constraint in P (x) | a

.
< x, namely a + 1,

is smaller than the minimal solution of the constraint in ¬P (x) | x .= b∧ a
.
< x, namely

b. If the branch had only such interpretations, it would permanently falsify clause (1)
and could then be closed. This situation is achieved by applying Domain Split with the
literal a

.
< b, resulting in the tree of Figure 1e. As for the branch ending in a 6

.
< b, all its

interpretations satisfy P (n) for all n > a (because the constraint in ¬P (x) | x .= b∧a
.
< x

is now unsatisfiable) and falsify P (b) (by default, because a 6< b). It follows that they

4 In DPLL terms, the split with P (x) | a
.
< x and ¬P (x) | a

.
< x is akin to a split on the com-

plementary literals P (a + 1) and ¬P (a + 1). The calculus soundness proof relies in essence on this
observation.

5 Because b is a minimal solution of x
.
= b ∧ a

.
< x in all interpretations of the branch where

x
.
= b ∧ a

.
< x has a solution.
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all satisfy the clause set. The calculus recognizes that and stops. Had the clause set
been unsatisfiable, the calculus would have generated a tree with closed branches only.

Note how the calculus found a model, in fact a set of models, for the input clause set
without having to enumerate all possible values for the parameters a and b, resorting
instead to much more course-grained domain splits. In its full generality, the calculus
still works as sketched above. Its formal description is, however, more complex because
the calculus handles constraints with more than one (free) variable, and does not require
the computation of explicit, symbolic representations of minimal solutions.

3 Constraints and Constrained Clauses

The new calculus works with clauses containing parametric linear integer constraints,
which we call here simply constraints. These are any first-order formulas over the
signature ΣΠ

Z = { .=,
.
<, +, −, 0, ±1, ±2, . . .} ∪ Π, where Π is a finite set of constant

symbols not in ΣZ = ΣΠ
Z \ Π. The symbols of ΣZ have the expected arity and usage.

Following a common math terminology, we will call the elements of Π parameters. We
will use, possibly with subscripts, the letters m,n to denote the integer constants (the
constants in ΣZ); a, b to denote parameters; x, y to denote variables (chosen from an
infinite set X); s, t to denote terms over ΣΠ

Z , and l to denote literals.
We write t : [m.. n] as an abbreviation of m

.
≤ t∧ t

.
≤ n. We denote by ∃̄ c (resp. ∀̄ c)

the existential (resp. universal) closure of the constraint c, and by π x c the projection
of c on x, i.e., ∃y c where y is a tuple of all the free variables of c that are not in the
variable tuple x.

A constraint is ground if it contains no variables, closed if it contains no free vari-
ables.6 We define a satisfaction relation |=Z for closed parameter-free constraints as fol-
lows: |=Z c if c is satisfied in the standard sense in the structure Z of the integers—the
one interpreting the symbols of ΣZ in the usual way over the universe Z. A parameter
valuation α, a mapping from Π to Z, determines an expansion Zα of Z to the signature
ΣΠ
Z that interprets each a ∈ Π as α(a). For each parameter valuation α and closed

constraint c we write α |=Z c to denote that c is satisfied in Zα. A (possibly non-closed)
constraint c is α-satisfiable if α |=Z ∃̄ c.

For finite sets Γ of closed constraints we denote by Mods(Γ) the set of all valuations
α such that α |=Z Γ. We write Γ |=Z c to denote that α |=Z c for all α ∈ Mods(Γ). For
instance, a : [1 .. 10] |=Z ∃x x

.
< a but a : [1 .. 10] 6|=Z ∃x (5

.
< x ∧ x

.
< a).

If e is a term or a constraint, y = (y1, . . . , yk) is a tuple of distinct variables con-
taining the free variables of e, and t = (t1, . . . , tk), we denote by e[t/y] the result of
simultaneously replacing each free occurrence of yi in e by ti, possibly after renaming
e’s bound variables as needed to avoid variable capturing. We will write just e[t] when
y is clear from context. With a slight abuse of notation, when x is a tuple of distinct
variables, we will write e[x] to denote that the free variables of e are included in x.

6 Note that a ground or closed constraint can contain parameters.
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For any valuation α, a tuple m of integer constants is an α-solution of a constraint
c[x] if α |=Z c[m]. For instance, {a 7→ 3} |=Z c[4, 1], where c[x, y] = (a .= x− y).

With tuples s = (s1, . . . , sn) and t = (t1, . . . , tn) of terms, we will use the following
abbreviations:

s .= t def= s1
.= t1 ∧ · · · ∧ sn

.= tn

s
.
≤ t def= s1

.
≤ t1 ∧ · · · ∧ sn

.
≤ tn s

.
< t def= s

.
≤ t ∧ ¬(s .= t)

s
.
<` t def=

{
⊥ if n = 0
s1

.
< t1 ∨ (s1

.= t1 ∧ (s2, . . . , sn)
.
<` (t2, . . . , tn)) if n > 0

s
.
≤` t def= s .= t ∨ s

.
<` t

It should be clear that s
.
≤ t denotes the component-wise extension of the integer

ordering ≤ to integer tuples, s
.
≤` t denotes the lexicographic extension of ≤, and s

.
< t

and s
.
<` t the strict versions of those.

The example in the introduction demonstrated the role of minimal solutions of (sat-
isfiable) constraints. However, minimal solutions need not always exist—consider e.g.
the constraint x

.
< 0. We say that a constraint c is admissible iff for all parameter

valuations α, if c is α-satisfiable then the set of α-solutions of c contains finitely many
minimal elements with respect to

.
≤, each of which we call a minimal α-solution of c.

From now on we always assume that all constraints are admissible. Note that admis-
sibility can be easily enforced by conjoining a given constraint c[x] with the constraint
n

.
≤ x for some tuple n of integer constants.

As indicated in Section 2, the calculus needs to analyse constraints and their minimal
solutions. We stress that for the calculus to be effective, it need not actually compute
minimal solutions. Instead, it is enough for it to work with constraints that denote each
of the minimal α-solutions m1, ...,mn of an α-satisfiable constraint c[x]. This can be
done with the formulas µk c defined below, where y is a tuple of fresh variables with the
same length as x and k ≥ 1.7

µ c
def= c ∧ ∀y (c[y]→ ¬(y

.
< x)) µ` c

def= c ∧ ∀y (c[y]→ x
.
≤` y)

µk c
def= µ` (¬(µ1 c) ∧ · · · ∧ ¬(µk−1 c) ∧ (µ c))

Recalling that c is admissible, it is easy to see that for any valuation α, µ c has at
most n α-solutions (for some n): the n minimal α-solutions of c, if any. If c is α-
satisfiable, let m1, ...,mn be the enumeration of these solutions in the lexicographic
order

.
≤`. Observing that

.
≤` is a linearization of

.
≤, it is also easy to see that µ` c has

exactly one α-solution: m1. Similarly, for k = 1, . . . , n, µk c has exactly one α-solution:
mk (this is thanks to the additional constraint ¬(µ1 c)∧ · · · ∧ ¬(µk−1 c), which excludes
the previous minimal α-solutions, denoted by µ1 c, . . . , µk−1. For k > n, µk c is never
α-satisfiable. This is a formal statement of these claims:

7 The notations ∀x c and ∃x c stand just for c when x is empty.
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Lemma 3.1 Let α be an assignment and c an admissible constraint. Then, there is an
n ≥ 0 such that µ1 c, . . . , µn c have unique, pairwise different α-solutions, which are all
minimal α-solutions of c. Furthermore, for all k > n, µk c is not α-satisfiable.

For example, if c[(x, y)] = a
.
≤ x ∧ a

.
≤ y ∧ ¬(x .= y) then µ`c is semantically

equivalent (≡) to x .= a ∧ y .= a + 1, µ c ≡ (x .= a ∧ y .= a + 1) ∨ (x .= a + 1 ∧ y .= a),
µ1 c ≡ (x .= a ∧ y .= a+ 1), µ2 c = (x .= a+ 1 ∧ y .= a) and µ3 c is not α-satisfiable, for
any α.

In Section 2 we introduced the (informal) notion of a permanently valid literal. In
the current terminology, a (ground) literal, say P (a+ 1, a) is permanently valid if there
is a literal in the semantic tree P (x, y) | ck such that the tuple (a+ 1, a) is c[x, y]’s least
α-solution wrt.

.
<µ` , for all α ∈ Γ, where ck admits only α-solutions that are greater or

equal wrt.
.
≤ than µk c, for some constraint c.

As we will see later, the calculus compares lexicographically minimal α-solutions
of constraints that have a single minimal solution. With such constraints it is enough
to compare their least α-solutions with respect to

.
≤`. This is done with the following

comparison operators over constraints, where x and y are disjoint vectors of variables
of the same length:

c
.
<µ` d

def= ∃x ∃y (µ` c[x] ∧ µ` d[y] ∧ x
.
<` y) .

In words, for every α, the formula c
.
<µ` d is α-satisfiable iff the least α-solutions of c

and d exist, and the former is
.
<`-smaller than the latter. Similarly, we write

c
.=µ` d

def= ∃x (µ` c[x] ∧ µ` d[x])

to denote the formula expressing that c[x] and d[x] have the same least solution.
From the above, it is not difficult to show the following.

Lemma 3.2 (Total ordering) Let α be a parameter valuation, and c[x] and d[x] two α-
satisfiable (admissible) constraints. Then, exactly one of the following cases applies: (i)
α |=Z c

.
<µ` d, (ii) α |=Z c

.=µ` d, or (iii) α |=Z d
.
<µ` c.

We stress that the restriction to α-satisfiable constraints is essential here. If c or d
is not α-satisfiable, then none of the listed cases applies.

3.1 Constrained Clauses

We now expand the signature ΣΠ
Z with a finite set of free predicate symbols, and denote

the resulting signature by Σ. The language of our logic is made of sets of admissible
constrained Σ-clauses, defined below. The semantics of the logic consists of all the
expansions of the integer structure to the signature Σ, the Σ-expansions of Z.

A normalized literal is an expression of the form (¬)p(x) where p is a n-ary free
predicate symbol of Σ and x is an n-tuple of distinct variables. We write L(x) to denote
that L is a normalized literal whose argument tuple is exactly x.
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A normalized clause is an expression C = L1(x1) ∨ · · · ∨ Ln(xn) where n ≥ 0 and
each Li(xi) is a normalized literal, called a literal in C. We write C(x) to indicate that
C is a normalized clause whose variables are exactly x. We denote the empty clause by
�.

A (constrained Σ-)clause D[x] is an expression of the form C(x) ← c with the free
variables of c included in x. When C is � we call D a constrained empty clause. A clause
C(x)← c is LIA-(un)satisfiable if there is an (no) Σ-expansion of the integer structure
Z that satisfies ∀x (c→ C(x)). A set S of clauses and constraints is LIA-(un)satisfiable
if there is an (no) Σ-expansion of Z that satisfies every element of S.

We will consider only admissible clauses, i.e., constrained clauses C(x) ← c where
(i) C 6= � and (ii) c is an admissible constraint. Condition (i) above is motivated by
purely technical reasons. It is, however, no real restriction, as any clause � ← c in a
clause set S can be replaced by false ← c, where false is a 0-ary predicate symbol not
in S, once S has been extended with the clause ¬false ← >.8 Condition (ii) is the real
restriction, needed to guarantee the existence of minimal solutions, as explained earlier.
To simplify the presentation, we will further restrict ourselves to clauses with (trivially
admissible) constrains of the form c[x] ∧ 0

.
≤ x, where 0 is the tuple of all zeros. For

brevity, in our examples we will sometimes leave the constraint 0
.
≤ x implicit.

4 Constrained Contexts

A context literal K is a pair L(x) | c where L(x) is a normalized literal and c is
an (admissible) constraint with free variables included in x. We denote by K the
constrained literal L(x) | c, where L is the complement of L.

A (constrained) context is a pair Λ · Γ where Γ is a finite set of closed constraints
and Λ is a finite set of context literals. We will implicitly identify the sets Λ with their
closure under renamings of a context literal’s free variables.

In terms of the semantic tree presentation in Figure 1, each branch there corre-
sponds (modulo a detail explained below) to a context Λ ·Γ, where Γ are the parameter
constraints along the branch and Λ are the constrained literals. In the discussion of
Figure 1 we explained informally the meaning of parameter constraints and constrained
literals. The purpose of this section is to provide a formal account for that. We start
with some preliminary definitions.

Definition 4.1 (α-Covers, α-Extends) Let α be a parameter valuation. A context literal
L(x) | c1 α-covers a context literal L(x) | c2 if α |=Z ∃̄ c2 and α |=Z ∀̄ (c2 → c1).

The literal L(x) | c1 α-extends L(x) | c2 if L(x) | c1 α-covers L(x) | c2 and α |=Z
c1

.=µ` c2. If Γ is a set of closed constraints, L(x) | c1 Γ-extends L(x) | c2 if it α-extends
it for all α ∈ Mods(Γ).

8 We will use > and ⊥ respectively for the universally true and the universally false constraint.
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For an unnormalized literal L(t) we say that L(x) | c1[x] α-covers L(t) if L(x) covers
the normalized version of L(t), i.e., the literal L(x) | π x (x .= t[z/x]) where z is a tuple
of fresh variables.

The intention of the previous definition is to compare context literals with respect
to their set of solutions for a fixed valuation α. This is expressed basically by the
second condition in the definition of α-covers. For example, P (x) | a

.
< x α-covers

P (x) | a + 1
.
< x, for any α. The first condition (α |=Z ∃̄ c2) is needed to exclude

α-coverage for trivial reasons, because c2 is not α-satisfiable. Without it, for example,
P (x) | x .= 2 would α-cover P (x) | x .= a ∧ a .= 5 when, say, α(a) = 3, which is not
intended. But note that α 6|=Z ∃x (x .= a ∧ a .= 5) in this case. Also note that the
two conditions α |=Z ∃̄ c2 and α |=Z ∀̄ (c2 → c1) in combination enforce that c1 is
α-satisfiable as well.

The notion of α-extension is similar to that of α-coverage, but applies to literals
with the same least solutions only. For instance, P (x) | 0

.
≤ x ∧ x

.
< 7 α-extends

P (x) | 0
.
≤ x ∧ x

.
< 3, and α-covers it, for any α (the least solution being 0 for both

literals), and P (x) | 3
.
< x α-covers P (x) | 7

.
< x but does not α-extend it.

The concepts introduced in the next three definitions allow us to associate a set of
structures to each context satisfying certain well-formedness conditions.

Definition 4.2 (α-Produces) Let Λ be a set of constrained literals and α a parameter
valuation. A context literal L(x) | c1 α-produces a context literal L(x) | c2 wrt. Λ if

1. L(x) | c1 α-covers L(x) | c2, and

2. there is no L(x) | d in Λ that α-covers L(x) | c2 and such that α |=Z c1
.
<µ` d.

The set Λ α-produces a context literal K if some literal in Λ α-produces K wrt. Λ. A
context Λ · Γ produces K if there is an α ∈ Mods(Γ) such that Λ α-produces K.

Note that a context literal L(x) | c1 can α-produce a context literal L(x) | c2 only if
both c1 and c2 are α-satisfiable.

As an example, if α(a) = 3 then P (x) | 2
.
< x α-produces P (5) wrt. Λ = {¬P (x) |

x
.= a ∧ a .= 5}. Observe that neither α |=Z (2

.
< x)

.
<µ` (x .= a ∧ a .= 5) holds nor

does ¬P (x) | x .= a ∧ a .= 5 α-cover ¬P (5), as x .= a ∧ a .= 5 is not α-satisfiable.
However, if α(a) = 5 then P (x) | 2

.
< x no longer α-produces P (5) wrt. Λ, because now

α |=Z (2
.
< x)

.
<µ` (x .= a ∧ a .= 5) and ¬P (x) | x .= a ∧ a .= 5 α-covers ¬P (5).

Definition 4.3 (α-Contradictory) Let Λ · Γ be a context and α ∈ Mods(Γ). A context
literal L(x) | c is α-contradictory with Λ if there is a context literal L(x) | d in Λ such
that α |=Z c

.=µ` d. It is Γ-contradictory with Λ if there is a L(x) | d in Λ such that
Γ |=Z c

.=µ` d.
The literal L(x) | c is contradictory with the context Λ · Γ if it is α-contradictory

with Λ for some α ∈ Mods(Γ). The context Λ · Γ itself is contradictory if some context
literal in Λ is contradictory with it.
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The notion of Γ-contradictory is based on equality of the least α-solutions of the
involved constraints for all α ∈ Mods(Γ). It underlies the abandoning of candidate
models due to permanently falsified clauses in Section 2, which is captured precisely as
closing literals in Definition 4.8 below.

We require our contexts not only to be non-contradictory but also to constrain
each parameter to a finite subset of Z. Furthermore, they should guarantee that the
associated Σ-expansions of Z are total over tuples of natural numbers. All this is
achieved with admissible contexts.

Definition 4.4 (Admissible Γ, Admissible Context) A context Γ · Λ is admissible if

1. Γ is admissible, that is, Γ is satisfiable, and, for each parameter a in Π, there are
integer constants m,n ≥ 0 such that Γ |= a : [m.. n].

2. For each free predicate symbol P in Σ, the set Λ contains ¬P (x) | −1
.
≤ x.

3. Λ · Γ is not contradictory.9

Thanks to Condition 2 in the above definition, an admissible context α-produces
a literal ¬P (n) with n consisting of non-negative integer constants, if no other literal
in the context α-produces P (n). Observe that admissible contexts Λ · Γ may contain
context literals whose constraint is not α-satisfiable for some (or even all) α ∈ Mods(Γ).
For those α’s, such literals simply do not matter as their effect is null.

However, admissible contexts are always consistent in the following sense.

Lemma 4.5 (Consistent α-Productivity) Let Λ · Γ be an admissible context and α ∈
Mods(Γ). For any context literal L(x) | c, Λ cannot α-produce both L(x) | c and its
complement L(x) | c.

The following definition provides the formal account of the meaning of contexts
announced at the beginning of this section.

Definition 4.6 (Induced Structure) Let Γ · Λ be an admissible context and let α ∈
Mods(Γ). The Σ-structure ZΛ,α induced by Λ and α is the expansion of Z to all the
symbols in Σ that agrees with α on the parameters10 and satisfies a positive ground
literal L(s) iff Λ α-produces L(s).

Lemma 4.7 Let Λ ·Γ be an admissible context and α ∈ Mods(Γ). For any ground literal

L(s) such that α |=Z 0
.
≤ s, ZΛ,α satisfies L(s) if and only if Λ α-produces L(s).

9 Equivalently, for every α ∈ Mods(Γ) and every pair of context literals L(x) | c and L(x) | d in Λ,
it is not the case that α |=Z c

.
=µ` d.

10 That is, ZΛ,α interprets each parameter a as α(a).
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Proof. This is a consequence of Lemma 4.5 and the presence of the literals ¬P (x) |
−1

.
≤ x in admissible contexts.

Thus, Definition 4.6 connects syntax (α-productivity) to semantics (truth) in a one-to-
one way.

In Section 2 we explained the derivation in Figure 1 as being driven by semantic
considerations, to construct a model by successive branch extensions. The calculus’
inference rules achieve that in their core by computing context unifiers.

Definition 4.8 (Context Unifier) Let Λ·Γ be an admissible context and D[x] = L1(x1)∨
· · · ∨ Lk(xk) ← c[x] a constrained clause with free variables x. A context unifier of D
against Λ · Γ is a constraint

d[x] = d′[x] ∧ ∃y (y
.
≤ x ∧ µj d′[y]), where d′[x] = c[x] ∧ c1[x1] ∧ · · · ∧ ck[xk] (1)

with each ci coming from a literal Li(xi) | ci in Λ, and j ≥ 1.
For each i = 1, . . . , k, the context literal

Li(xi) | di, with di = π xi d (2)

is a literal of the context unifier. The literal Li(xi) | di is closing if Γ |=Z ci
.=µ` di.

Otherwise, it is a (α-)remainder literal (of d) if there is an α ∈ Mods(Γ) such that
α |=Z ci

.
<µ` di (equivalently, such that α 6|=Z ci

.=µ` di and di is α-satisfiable)11.
The context unifier d is closing if each of its literals is closing. It is (α-)productive

if for each i = 1, . . . , k, the context literal Li(xi) | ci α-produces Li(xi) | di wrt. Λ for
some α ∈ Mods(Γ).

The constraint d in (1) can be perhaps best understood as follows. Its component
d′ = c[x] ∧ c1[x1] ∧ · · · ∧ ck[xk] denotes any simultaneous solution of D’s constraint and
the constraints coming from pairing each of D’s literal with a context literal with same
predicate symbol but opposite sign. The component µjd′[y] denotes the jth minimal
solution of d′, which bounds from below the solutions of d. A simple, but important
consequence (for completeness) is that for any α and concrete solution m of d′, j can be
always chosen so that d[m] is α-satisfied. As a special case, when m is the j-th minimal
solution of d′, it is also the least solution of d. Regarding di in (2), for any α, the set of
α-solutions of di is the projection over the vector xi of the solutions of d.

A formal statement of the above is expressed by the following lemma.

Lemma 4.9 (Lifting) Let Λ ·Γ be an admissible context, α ∈ Mods(Γ), D[x] = L1(x1)∨
· · · ∨ Lk(xk)← c[x] with k ≥ 1 a constrained clause, and m a vector of constants from
Z. If ZΛ,α falsifies D[m], then there is an α-productive context unifier d of D against
Λ · Γ where m is an α-solution of d.

11 Observe that if di is α-satisfiable so are d and ci.
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As an example (with no parameters, for simplicity), let d′ = c[x1, x2]∧ c1[x1]∧ c2[x2]
where

c = ¬(x1
.= x2), c1 = 1

.
≤ x1, c2 = 1

.
≤ x2 .

Then, the (unique) solution of µj d′ for j = 1 is (1, 2); for j = 2 it is (2, 1). By fixing
j = 1 now let us commit to (1, 2). Then the solutions of d1 are (1), (2), . . . and the
solutions of d2 are (2), (3), . . . The least solution of d1, (1), coincides with the projection
over x1 of the commited minimal solution (1, 2). Similarly for d2. This is no accident
and is crucial in proving the soundness of the calculus. It relies on the property that
the least (individual) solutions of all the di’s are, in combination, the least solution of
d—which is in turn the first minimal solution of d′. In the example, the least solutions
of d1 and d2 are 1 and 2, respectively, and combine into (1, 2), the least solution of d.

We stress that all the notions in the above definition are effective thanks to the
decidability of LIA. A subtle point here is the choice of j in (1), as j is not bounded a
priori. However, all these notions hold only if di is α-satisfiable for some or all (finitely)
many choices of α ∈ Mods(Γ), and that di becomes α-unsatisfiable if j exceeds the
number of minimal α-solutions of di. By this argument, the possible values for j are
effectively bounded.

Example 4.10 Consider the context

{P (x) | a
.
< x} · {a : [1 .. 10], b : [1 .. 10]}

and the input clause ¬P (x) ← b
.
< x. The context corresponds to the left branch in

Figure 1b. There is a context unifier, for any j ≥ 1, d = a
.
< x ∧ b

.
< x ∧ ∃y (y

.
≤

x ∧ µj (a
.
< y ∧ b

.
< y)) . Its literal is K ′ = ¬P (x) | d1, where d1 = π x d( = d).

The constraint (a
.
< y ∧ b

.
< y) has a unique minimal α-solution, which is also its least

α-solution. Thus, d is equivalent to a
.
< x ∧ b

.
< x, obtained with j = 1. Let us analyze

if d is closing, that is, if Γ |=Z (a
.
< x) .=µ` d. That is true iff

Γ |=Z ∃x µ` (a
.
< x) ∧ µ` (a

.
< x ∧ b

.
< x) . (3)

By quantifier elimination we can show that checking (3) reduces to checking if Γ |=Z
¬(a

.
< b). Since that entailment does not hold, K ′ is not closing, and neither is d.

Now take any α ∈ Mods(Γ) that falsifies ¬(a
.
< b), and hence satisfies a

.
< b. Clearly,

d1 is α-satisfiable. According to Definition 4.8 then, K ′ is a remainder literal of d. Let
us verify then that, as stated in the definition,

α |=Z (a
.
< x)

.
<µ` (a

.
< x ∧ b

.
< x) . (4)

This can be done by quantifier elimination again, reducing the formula in (4) to a
.
< b.
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5 The Calculus

The inference rules of the calculus are defined over triples, sequents, of the form Λ·Γ ` Φ
where Λ · Γ is an admissible context and Φ is a set of constrained clauses.

The completeness of the calculus guarantees that each of its branches terminates with
failure, i.e., contains the clause �← >, when Φ is LIA-unsatisfiable. Contrapositively,
from any unfailing branch it is possible to extract (possibly in the limit) a set of models
for Φ. When the branch is finite and ends with a sequent Λn · Γn ` Φ, these models are
precisely those denoted by Λn · Γn.

Context unifiers play a crucial role in the evolution of Λ · Γ. To illustrate their use,
consider a sequent Λ · Γ ` Φ. If for some α ∈ Mods(Γ) the structure ZΛ,α induced by Λ
and α falsifies Φ, it must falsify a “ground” instance D[m] of some clause D in Φ. As
shown in the appendix, this implies the existence of an α-productive context unifier d
of D against Λ · Γ where m is an α-solution of d.

If d has an α-remainder literal K ′i = L(xi) | di not contradictory with the context,
the problem with D[m] can be fixed by adding K ′i to Λ. In fact, if mi is the projection
of m over xi, then K ′i will α-produce Li(mi) in the new context, as its least solution is
no greater than mi.12 That will make the new ZΛ,α satisfy Li(mi) and so D[m] as well.
This is essentially what the calculus does to Λ ·Γ ` Φ with the rules Split(d) or Extend(d)
introduced below. If each α-remainder literal of d is contradictory with the context, it
will be β-contradictory with Λ for one or more β ∈ Mods(Γ). Then, it is necessary to
strengthen Γ to eliminate the offending β’s, which is achieved with the Domain Split(d)
rule. Strengthening Γ either makes Split(d) or Extend(d) applicable to an α-remainder
literal of d or turns all literals of d into closing ones. In the latter case, the calculus will
close the corresponding branch with the Close(d) rule.

5.1 Derivation Rules

The ME(LIA) calculus has the following five derivation rules, where the last is optional.
Applications of the other rules are subject to certain fairness criteria, explained later.
In the rules, the notation Φ, D abbreviates Φ ∪ {D}. (Similarly for Λ,K and Γ, c.)

Close(d)
Λ · Γ ` Φ, D

Λ · Γ ` Φ, D,�← >
if
{

(�← >) /∈ Φ ∪ {D}, and
d is a closing context unifier of D against Λ · Γ.

This rule recognizes that the context not only falsifies some input clause D but is
also unfixable, and adds the empty clause as a marker for that.

Split(d)
Λ · Γ ` Φ, D

(Λ, Li | di) · Γ ` Φ, D (Λ, Li | di) · Γ ` Φ, D
if ?

12 This is the analogous of “lifting” in a Herbrand-based theorem proving.
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where

? =


d is a context unifier of D against Λ · Γ,
Li | di is a remainder literal of d, and
neither Li | di nor Li | di is contradictory with Λ · Γ.

This rule, analogous to the main rule of the DPLL procedure, derives one of two
possible sequents non-deterministically. The left-hand side conclusion chooses to fix the
context by adding Li | di to Λ. The right-hand side branch is needed for soundness,
in case the left-hand side fix leads to an application of Close. It causes progress in the
derivation by making Li | di Γ-contradictory with the context, which forces the calculus
to consider other alternatives to Li | di.

Extend(d)
Λ · Γ ` Φ, D

(Λ, Li | di) · Γ ` Φ, D
if


d is a context unifier of D against Λ · Γ,
Li | di is a remainder literal of d,
Li | di is Γ-contradictory with Λ, and
there is no K in Λ that Γ-extends Li | di.

This rule can be seen as a one-branched Split. If Li | di is Γ-contradictory with
Λ, the only way to fix the context is to add Li | di to it. Its last precondition is a
redundancy test—which also prevents a repeated application of the rule with the same
literal.

To illustrate the need of Extend, suppose Λ = {¬P (x) | −1
.
≤ x, P (x) | x : [1 .. 5]},

Γ = ∅ and D = P (x) ← x : [1 .. 7]. The clause D is falsified in the (single) induced
interpretation13. Adding P (x) | x : [1 .. 7] to Λ will fix the problem. However, Split
cannot be used for that since ¬P (x) | x : [1 .. 7] is Γ-contradictory with Λ—for having
the same least solution, 1, as the constraint of P (x) | x : [1 .. 5]. Extend will do instead.

Domain Split(d)
Λ · Γ ` Φ, D

Λ · (Γ, c .=µ` di) ` Φ, D Λ · (Γ,¬(c .=µ` di)) ` Φ, D
if ?

where

? =


d is a context unifier of D against Λ · Γ,
there is a literal Li | di of d, and
there is Li | c or Li | c in Λ s.t.
α |=Z c

.=µ` di, for some α ∈ Mods(Γ), and
Γ 6|=Z c

.=µ` di.

The purpose of this rule is to enable later applications of the other rules that are
not applicable to the current context. It does that by partitioning the current Mods(Γ)
in two non-empty parts.

Observe that adding parameters with finite domains to the input language, as we did,
does not increase its expressivity; in principle, they can be eliminated by an exhaustive

13 Because, for instance, ¬P (6) is true in it.
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case analysis over all the possible values. In practice, however, doing that can be
prohibitively expensive, depending on the size of the parameters’ domains. In contrast,
this calculus treats constants much more efficiently, by doing case analysis on parameters
only on demand, as manifested in the applicability conditions of Domain Split.

Ground Split
Λ · Γ ` Φ

Λ · (Γ, l) ` Φ Λ · (Γ, l) ` Φ
if ?

where

? =


l is a ground atomic constraint over the parameters Π,
α |=Z l, for some α ∈ Mods(Γ), and
Γ 6|=Z l.

This optional rule adds another, more flexible, way to do case analyses on the pa-
rameters. It can improve efficiency in particular when paired with a suitable quan-
tifier elimination procedure for LIA. In that case, one can replace each application of
Domain Split, adding a constraint [¬](c .=µ` di) to Γ, with one application of Ground Split
where the chosen ground atomic constraint l is computed from [¬](c .=µ` di) by the QE
procedure, and is so that either it or its complement l entails c .=µ` di. The net effect is
that Γ grows only with ground literals, making tests involving it potentially cheaper.

It is not too difficult to see that the non-optional derivation rules are mutually
exclusive, in the sense that for a given sequent at most one of them is applicable to the
same clause D, context unifier d, and literal of d.

5.2 Derivations

Derivations in the ME(LIA) calculus are defined in terms of derivation trees, where each
node corresponds to a particular application of a derivation rule, and each of the node’s
children corresponds to one of the conclusions of the rule. More precisely, a derivation
tree is a labeled tree inductively defined as follows.

Let Φ be an admissible clause set and Γ an admissible set of closed constraints. A
one-node tree is a derivation tree (of Φ and Γ) iff its root is labeled with an initial
sequent for Φ and Γ, that is, a sequent of the form Λ · Γ ` Φ, where Λ contains (only)
the constraint literal ¬p(x) | −1

.
≤ x for each free predicate symbol p in Σ. It is easy

to see that the context Λ · Γ is admissible.
A tree T′ is a derivation tree iff it is obtained from a derivation tree T by adding

to a leaf node N in T new children nodes N1, . . . , Nm so that the sequents labeling
N1, . . . , Nm can be derived by applying a rule of the calculus to the sequent labeling N .
In this case, we say that T′ is derived from T. When it is convenient and it does not
cause confusion, we will identify the nodes of a derivation tree with their labels.14

14The formal framework of derivation trees over sequents could be simplified to some degree, as the
clause set Φ does not change and both Λ and Γ only grow with the derivation, but never shrink. The
current form can be justified with a view to adding simplification rules later, which will allow to modify
or remove elements in Φ, Λ and Γ. Also, the ME(LIA) calculus will be easier to grasp for readers familiar
with the ME calculus, which is presented in the same style.
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We say that a branch in a derivation tree is closed if its leaf is labeled by a sequent
of the form Λ ·Γ ` Φ,�← >; otherwise, the branch is open. A derivation tree is closed
if each of its branches is closed, and it is open otherwise. We say that a derivation tree
(of Φ and Γ) is a refutation tree (of Φ and Γ) iff it is closed.

Definition 5.1 (Derivation) Let Φ be an admissible clause set and Γ an admissible set of
closed constraints. A derivation (in ME(LIA)) of Φ and Γ is a possibly infinite sequence
of derivation trees D = (Ti)i<κ, such that T0 is a one-node tree whose root is labeled
with an initial sequent for Φ and Γ, and for all i with 0 < i < κ, Ti is derived from
Ti−1.

We say that D is a refutation of Φ and Γ iff D is finite and ends with a refutation tree
of Φ and Γ.

We show below that the ME(LIA) calculus is sound and (strongly) complete in the
following sense: for all admissible clause sets Φ and admissible sets of closed constraints
Γ, Φ ∪ Γ is unsatisfiable iff every fair derivation of Φ and Γ is a refutation of Φ and Γ.

6 Correctness of the Calculus

6.1 Soundness

Proposition 6.1 (Soundness) For all admissible clause sets Φ and admissible sets of
closed constraints Γ, if there is a refutation tree of Φ and Γ, then Γ ∪ Φ is LIA-
unsatisfiable.

In essence, and leaving Γ aside, the proof is by first deriving a binary tree over ground,
parameter-free literals that reflects the applications of the derivation rules in the con-
struction of the given refutation tree. For instance, a Split application with its new
constraint literal L(x) | c in the left context gives rise to the literal L(m), where m
is the least α-solution of c for a given α. In the resulting tree neighbouring nodes will
be labelled with complementary literals, like L(m) and ¬L(m). In the second step it
is shown that this binary tree is closed by ground instances from the input set. It is
straightforward then to argue that Φ ∪ Γ is LIA-unsatisfiable.

6.2 Fairness

To prove the calculus’ completeness we will introduce the notion of an exhausted branch,
in essence, a (limit) derivation tree branch that need not be extended any further by
the calculus and that is obtained by a fair derivation.

The specific notion of fairness that we adopt is defined formally in the following. For
that, it will be convenient to describe a tree T as the pair (N,E), where N is the set of
the nodes of T and E is the set of the edges of T. In the rest of the section, we will use
κ to denote a countable (possibly infinite) cardinal, and i, j to denote finite cardinals.
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Each derivation D = (Ti)i<κ = ((Ni,Ei))i<κ in the calculus determines a limit tree
T := (

⋃
i<κNi,

⋃
i<κEi). It is easy to show that a limit tree of a derivation D is indeed

a tree. But it will not be a derivation tree unless D is finite.

Definition 6.2 (Limit Context and Clause Set) Let T be the limit tree of some deriva-
tion, and let B = (Ni)i<κ be a branch in T with κ nodes. Let Λi · Γi ` Φi be
the sequent labeling node Ni, for all i < κ. We define the limit context of B as
ΛB ·ΓB := (

⋃
i<κ Λi) · (

⋃
i<κ Γi) and the limit clause set of B as ΦB :=

⋃
i<κ Φi.

Although, strictly speaking, ΛB ·ΓB is not a context because ΛB may be infinite, for the
purpose of the completeness proof we treat it as one. This is possible because all relevant
definitions (in particular Definition 4.8) can be applied without change to ΛB · ΓB as
well.

One of the main technical notions needed to prove the calculus’ completeness is that
of an exhausted branch, in essence, a (limit) derivation tree branch that need not be
extended any further. It is based on the notion of redundant context unifiers.

Definition 6.3 (Redundant Context Unifier) Let Λ1 · Γ1 and Λ2 · Γ2 be admissible con-
texts, α ∈ Mods(Γ1) and D a clause. A context unifier d of D against Λ1 · Γ1 is
α-redundant in Λ2 · Γ2 if

1. Λ2 α-produces some literal of d, or

2. Mods(Γ2) ( Mods(Γ1)

We say that d is redundant in Λ2 ·Γ2 if it is α-redundant in Λ2 ·Γ2 for all α ∈ Mods(Γ).

If condition (1) applies then the interpretation induced by Λ2 and α will already satisfy
D.15 There is no point then considering a derivation rule application based on that
d. Condition (2) allows us to discard an existing derivation rule application when the
constraints in Γ are strengthened.

Now, an exhausted (limit) branch (i) satisfies whenever Split, Extend or Domain Split
is applicable to some of its sequents, based on an α-productive context unifier, then
this context unifier is α-redundant in the context of some later sequent (a sequent more
distant from the root), (ii) cannot be applied Close, and (iii) does not contain �← >.

Definition 6.4 (Exhausted branch) Let T be a limit tree, and let B = (Ni)i<κ be a
branch in T with κ nodes. For all i < κ, let Λi · Γi ` Φi be the sequent labeling node
Ni. The branch B is exhausted if for all D ∈ ΦB and for all i < κ all of the following
hold:

(i) For all α ∈ Mods(ΓB), if Split(d), Extend(d) or Domain Split(d) is applicable to
Λi ·Γi ` Φi with selected clause D ∈ Φi, where d is an α-productive context unifier
of D against Λi · Γi, then there is j ≥ i with j < κ such that d is α-redundant in
Λj · Γj .

15Lemmas 4.5 and 4.7 in the Appendix provide a formal explanation for that.
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(ii) Close(d) is not applicable to Λi · Γi ` Φi, for selected clause D ∈ Φi and any
productive context unifier d of D against Λi · Γi.

(iii) D 6= (�← >).

As a consequence of the fact that any (admissible) context never α-produces both
a context literal and its complement (Lemma 4.5) it follows that d is an α-productive
context unifier if and only if it is not α-redundant in Λ ·Γ. Definition 6.4 requires us to
consider (α)-productive context unifiers only, where α ∈ Mods(Γ). It follows that these
(and only these) context unifiers are indeed non-redundant in the current context and
need consideration.

Definition 6.5 (Fairness) A limit tree of a derivation is fair if it is a refutation tree or
it has an exhausted branch. A derivation is fair if its limit tree is fair.

We point out that fair derivations in the sense above exist and are computable for
any set of Σ-clauses. A naive fair proof procedure, for instance, grows a branch until the
conditions (ii) and (iii) in Definition 6.4 are violated, and turns to another branch to
work on, if any, or otherwise applies the next Split, Extend or Domain Split taken from
a FIFO queue, unless its context unifier is redundant. A similar proof procedure has
been described for the ME calculus in [BFT06].

6.3 Completeness

For the rest of the section, let Φ be an admissible clause set, Γ a finite set of admissible
closed constraints, and assume that D is a fair derivation of Φ and Γ that is not a
refutation. Observe that D’s limit tree must have at least one exhausted branch. We
denote this branch by B = (Ni)i<κ. Then, by Λi · Γi ` Φi, we will always mean the
sequent labeling the node Ni in B, for all i < κ, and Λ0 · Γ0 ` Φ0 is an initial sequent
for Φ and Γ.

Lemma 6.6 For all i < κ, Γi is satisfiable, and there is an i < κ such that for all j ≥ i,
Γi = Γj = ΓB.

The following proposition is the main result for proving the calculus complete.

Proposition 6.7 (Model Construction) If (�← >) /∈ ΦB then, for every α ∈ Mods(ΓB),
ZΛB,α is a model of ΦB.

It is worth noting that Proposition 6.7 never holds for the trivial reason that ΓB is
unsatisfiable.

The completeness of the calculus is a consequence of Proposition 6.7 and Lemma 6.6.
We state it here in its contrapositive form to underline the model computation ability
of ME(LIA).
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Theorem 6.8 (Completeness) Let D be a fair derivation of Φ and Γ with limit tree T. If
T is not a refutation tree, then Φ∪Γ is satisfiable; more specifically, for every exhausted
branch B of T and for every α ∈ Mods(ΓB), ZΛB,α is a model of Φ ∪ Γ.

Note that the theorem includes a proof convergence result, that every fair derivation
of an unsatisfiable clause set is a refutation. In practical terms, it implies that as long
as a derivation strategy guarantees fairness, the order of application of the rules of the
calculus is irrelevant for proving an input clause set unsatisfiable, giving to the ME(LIA)
calculus the same flexibility enjoyed by the DPLL calculus at the propositional level.

Proof. Assume that T is not a refutation tree and let B be an exhausted branch of T.
By definition, (�← >) /∈ ΦB.

By Lemma 6.6, ΓB is satisfiable. Chose any α ∈ Mods(ΓB) arbitrarily. With
Proposition 6.7 conclude that ZΛB,α is a model of ΦB.

The only derivation rule that manipulates the Φi’s is Close, by adding � ← >, but
Close was not applied, as (� ← >) /∈ ΦB. It follows ΦB = Φi, for all i < κ, and so
ZΛB,α is a model of Φ0 ( = Φ), too. (*)

From the definition of the derivation rules it follows that Γ0 ⊆ ΓB. With α ∈
Mods(ΓB) it follows that α ∈ Mods(Γ0) ( = Mods(Γ)). By definition, ZΛB,α agrees with
α on the parameters. With (*) it follows that ZΛB,α is a model of Φ ∪ Γ, as desired.

When the branch B in Theorem 6.8 is finite, ΛB coincides with the context Λn ·Γn,
say, in B’s leaf. From a model computation perspective, this is a very important fact
because it means that a model of the original clause set—or rather, a finite representation
of it, Λn · Γn—is readily available at the end of the derivation; it does not have to be
computed from the branch, as in other model generation calculi.

7 Conclusions and Further Work

We have presented a basic version of ME(LIA), a new calculus for a logic with restricted
quantifiers and linear integer constraints. The calculus allows one to reason with certain
useful extensions of linear integer arithmetic with relations and finite domain constants.
With the restriction of variables to finite domains, implementations of the calculus have
potential applications in formal methods and in planning, where they can scale better
than current decision procedures based on weaker logics, such as propositional logic or
function-free clause logic.

We are working on extending the set of derivation rules with rules analogous to the
unit-propagation rule of DPLL, which are crucial for producing efficient implementa-
tions. With that goal, we are also working on refinements of the calculus that reduce the
cost of processing LIA-constraints. We stress though that the basic version presented
here is already geared toward efficiency for featuring a (semantically justified) redun-
dancy criterion, by reduction to LIA’s ordering constraints, that allows one to avoid
inferences with clause instances satisfied by one of the current candidate models.
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A Proofs

A.1 Section 3

Lemma 3.1 Let α be an assignment and c an admissible constraint. Then, there is an
n ≥ 0 such that µ1 c, . . . µn c have unique, pairwise different α-solutions, which are all
minimal α-solutions of c. Furthermore, for all k > n, µk c is not α-satisfiable.

Proof. Let m1, . . . ,mn be all minimal α-solutions of c, for some n ≥ 0. They exist
because c is admissible. Without loss of generality assume they are ordered lexico-
graphically, i.e. mi ≤` mj

16 whenever 1 ≤ i ≤ j ≤ n.
To prove the first part of the lemma it suffices to show that mk is the unique α-

solution of µk c, for all k = 1, . . . , n. It then follows that these solutions are pairwise
different, because m1, . . . ,mn are all different.

The case n = 0 being trivial, we assume n > 0 and prove the statement by induction
on k, for all k = 1, . . . , n.

If k = 1 then recall that by assumption m1 is the least of all minimal α-solutions of
c. This fact is expressed in our constraint language as the constraint µ`(µ c) ( = µ1 c),
which has exactly one α-solution, m1.

If k > 1 then assume by induction that m1, . . . ,mk−1 are the unique α-solution of
µ1 c, . . . µk−1 c, respectively. We have to prove this for µk c.

By assumption, mk is a minimal α-solution of c (the k-th one). Thus, mk is an
α-solution of µ c. Because m1, . . . ,mn are all pairwise different, it follows with the
induction hypothesis (and k ≤ n) that mk is not an α-solution of any of the constraints
µ1 c, , ..., µk−1 c. Thus mk is an α-solution of ¬(µ1 c) ∧ · · · ∧ ¬(µk−1 c). It follows that
mk is an α-solution of the conjunction c′ = ¬(µ1 c) ∧ · · · ∧ ¬(µk−1 c) ∧ (µc).

For the induction step it suffices to show that mk is the least α-solution of c′. Because
then, with µk c = µ` c

′ it follows with the definition of the µ`-operator that mk is the
unique α-solution of µk c.

By way of contradiction, assume there is a least α-solution m of c′ with m 6= mk.
We consider two (exhaustive) cases.

In the first case mk <` m. This is a direct contradiction to the assumption that m
is the least α-solution of c.

In the second case m <` mk. Because m is a (least) α-solution of c′, m is in
particular an α-solution of its conjunct (µ c). In other words, m is a minimal α-solution
of c′. Further, recall that m1, . . . ,mk, . . . ,mn are all minimal α-solutions and that they
are lexicographically ordered. Altogether, with m

.
< mk it follows that m = mj , for

some 1 ≤ j < k. By the induction hypothesis, mj is an α-solution of µj c. On the other
hand, with m and thus also mj being a solution of µk c, mj is also an α-solution of
µk c’s conjunct ¬(µj c). A plain contradiction.

From the contradictions in both cases conclude m = mk, which remained to be
shown for the first part.

16≤` denotes the lexicographic ordering on integer tuples, and < ` its strict subset.
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It remains to show that µk c is not α-satisfiable, for all k > n. This, however, is clear
with the first part, because any such α-solution m would provide a minimal α-solution
for c that is different to each of m1, . . . ,mn. However m1, . . . ,mn was assumed to
consist of all minimal α-solutions.

A.2 Section 4

Lemma 4.5 (Consistent α-Productivity) Let Λ · Γ be an admissible context and α ∈
Mods(Γ). For any context literal L(x) | c, Λ cannot α-produce both L(x) | c and its
complement L(x) | c.

Proof. Suppose, by contradiction, Λ α-produces both L(x) | c and its complement
L(x) | c, for some context literal L(x) | c. Then there need to be two context literals
K = L(x) | c1 and K ′ = L(x) | c2 in Λ that α-produce L(x) | c and L(x) | c wrt. Λ,
respectively. By definition of α-productivity, K and K ′ α-cover these literals and so c1

and c2 must be α-satisfiable. Now, with Lemma 3.2 three cases apply: if α |=Z c1
.=µ` c2

then Λ·Γ would be contradictory, which is impossible by admissibility; if α |=Z c1
.
<µ` c2

then K cannot α-produce L(x) | c, and if otherwise α |=Z c2
.
<µ` c1 then K ′ cannot

α-produce L(x) | c. Both cases contradict the assumption made.

Lemma 4.9 (Lifting) Let Λ ·Γ be an admissible context, α ∈ Mods(Γ), D[x] = L1(x1)∨
· · · ∨ Lk(xk)← c[x] with k ≥ 1 a constrained clause, and m a vector of constants from
Z. If ZΛ,α falsifies D[m], then there is an α-productive context unifier d of D against
Λ · Γ where m is an α-solution of d.

Proof. Suppose that ZΛ,α falsifies D[m]. This means:

1. ZΛ,α satisfies c[m], and, as ZΛ,α agrees with α on the parameters, α |=Z c[m].

2. ZΛ,α satisfies Li(mi), for all i = 1, . . . , k, where mi is the projection of m over the
variables xi.

From (2) and with Lemma 4.7, it follows that Λ α-produces Li(mi). That is, there are
context literals Li(xi) | ci in Λ that α-produce Li(mi), or, better said, the normalized
versions Li(xi) | xi

.= mi. With Definition 4.2 it follows α |=Z ∀̄ (xi
.= mi → ci).

Equivalently, α |=Z ci[mi]. Together with (1) above it follows α |=Z d′[m], where

d′[x] def= c[x] ∧ c1[x1] ∧ · · · ∧ ck[xk] .

Because m is an α-solution of d′ there is also a minimal α-solution m′ of d′ that is
less or equal (in the component-wise ordering) than m. With Lemma 3.1 this minimal
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solution can be characterized by a constraint. More precisely, there is a k ≥ 1 such that
m′ is the only α-solution of µk d′. But then, it follows that m is an α-solution of

d[x] = d′[x] ∧ ∃y (µk d′[y]) ∧ y
.
≤ x .

In other words, d is a context unifier of D against Λ · Γ where m is an α-solution of d.
It remains to show that d is α-productive and that m is an α-solution of d. Let, for

all i = 1, . . . , k,

Ki = Li(xi) | ci, and
K ′i = Li(xi) | di, where di = π xi d.

We have to show that Ki α-produces K ′i = Li(xi) | di wrt. Λ.
First we have to show that Ki α-covers K ′i, i.e., (i) α |=Z ∃̄di, and (ii) α |=Z di → ci.

Regarding (i), α |=Z d[m] from above entails that d is α-satisfiable. Its projection over
the variables xi is an α-solution of di, by definition. The claim (ii) follows immediately
from the fact that di is stronger than ci (ci is an element in the conjunction d).

It remains to show that there is no Li(xi) | ei in Λ that α-covers Li(xi) | di and
such that α |=Z ci

.
<µ` ei. It is not difficult to see that Λ cannot contain such a literal

Li(xi) | ei, because, if it did, Li(xi) | ci would not α-produce Li(mi) wrt. Λ as concluded
above.

A.3 Section 6.1

To prove soundness we have to show that whenever there is a refutation of Φ and Γ
then Γ ∪ Φ is LIA-unsatisfiable.

To prove the result, we need to take the context literals Λ into account as they evolve
in the refutation. To this end, for a given parameter evaluation α we define a set Λµ`(α)

of parameter-free, ground unit clauses as follows.

(L(x) | c)µ`(α) def=

{
L(m) if α |=Z µ` c[m/x]
> otherwise

Λµ`(α) def= {Kµ`(α) ← > | K ∈ Λ}

As noted earlier, if a constraint c[x] is α-satisfiable then its least solution m, a vector
of integer constants, is uniquely defined. Then, and only then it holds α |=Z µ` c[m].
This guarantees that (L(x) | c)µ`(α) is well-defined. In words then, the clause set Λµ`(α)

ist obtained from the context literals by instantiating these with their least solution for
a given parameter valuation α, if existent.

Let α be a parameter valuation. We say that a sequent Λ · Γ ` Φ is µ`-satisfiable iff
for some parameter valuation α, Λµ`(α)∪Γ∪Φ is LIA-satisfiable in some Σ-interpretation
that agrees with α on the parameters.



A.3 Section 6.1 27

Recall that derivations always start with an initial sequent Λ · Γ ` Φ for Φ and
Γ, where Λ contains (only) the constraint literal ¬P (x) | −1

.
≤ x for each predicate

symbol P in Σ. It follows that the initial sequent Λ · Γ ` Φ is µ`-satisfiable iff Γ ∪ Φ
is LIA-satisfiable. This is immediate, as by admissibility the minimal solution of each
constrained literal in Λ is of the form ¬P (−1), while each variable of a clause in Φ is
restricted to solutions ≥ 0.

To prove soundness it therefore suffices to show that whenever there is a refutation
of Φ and Γ, then the initial sequent Λ · Γ ` Φ is µ`-unsatisfiable (not µ`-satisfiable).

Lemma A.4 For each rule of the ME(LIA) calculus, if the premise of the rule is µ`-
satisfiable, then one of its conclusions is µ`-satisfiable as well.

Proof. We carry out a case analysis wrt. the derivation rule applied.
Close) The premise of Close(d) has the form Λ · Γ ` Φ, D, while its conclusion has the
form Λ · Γ ` Φ, D,� ← >, where d is a closing context unifier of D against Λ · Γ.
As Λ · Γ ` Φ, D,� ← > is µ`-unsatisfiable, we must show that Λ · Γ ` Φ, D is µ`-
unsatisfiable as well. Equivalently, we must show that for all parameter valuations α,
Λµ`(α) ∪ Γ ∪ Φ ∪ {D} is LIA-unsatisfiable in all Σ-interpretations that agree with α on
the parameters.

Let α be any parameter valuation. If α /∈ Mods(Γ) then there is no Σ-interpretation
that agrees with α on the parameters and that satisfies Γ. In this case the claim follws
trivially. Hence assume from now on α ∈ Mods(Γ).

As d[x] = d′[x]∧ ∃y (µj d′[y])∧ y
.
≤ x, for some j ≥ 1, where d′ = c∧ c1 ∧ · · · ∧ ck is

a closing context unifier of D[x] = L1(x1) ∨ · · · ∨ Lk(xk)← c[x] against Λ · Γ, there are
context literals Li(xi)|ci for 1 ≤ i ≤ k, with Γ |=Z ci

.=µ` di. With α ∈ Mods(Γ), thus,
α |=Z ci

.=µ` di.
With the definition of .=µ` it follows that di is α-satisfiable, and thus so is d. Because

d is stronger than d′ and d′ is stronger than ci, ci is α-satisfiable, too. It follows
(Li(xi) | ci)µ`(α) = Li(mi), where mi is the least α-solution of ci. That is, Λµ`(α)

includes the clauses Li(mi)← >, for all i = 1, . . . , k.
Consider the definition of di,

di = π xi (d′[x] ∧ ∃y (µj d′[y]) ∧ y
.
≤ x) .

Let n be the least α-solution of d. The constraint µ` di then has exactly one α-solution
which projects out ni from n. With α |=Z ci

.=µ` di it follows in current terminology
that α |=Z mi

.= ni.
Consider the clause instance D[n] = L1(n1) ∨ · · · ∨ Lk(nk) ← c[n]. Because n is

an α-solution of d (the least one), and d is stronger than c, n is an α-solution of c,
too. But then, any Σ-model Z of Λµ`(α) ∪ Γ ∪ Φ ∪ {D} (and in particular of D) that
agrees with α on the parameters must assign true to L1(n1) ∨ · · · ∨ Lk(nk). However,
with α |=Z mi

.= ni and the fact that Λµ`(α) includes the clauses Li(mi) ← >, for all
i = 1, . . . , k such a model Z cannot exist, which remained to be shown.
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Split) The premise of Split(d) has the form Λ · Γ ` Φ, while its conclusions have respec-
tively the form (Λ, Li | di) · Γ ` Φ and (Λ, Li | di) · Γ ` Φ. Suppose that Λ · Γ ` Φ, D is
µ`-satisfiable. Then there must be a parameter valuation α such that Λµ`(α)∪Γ∪Φ∪{D}
is LIA-satisfiable in some Σ-interpretation Z that agrees with α on the parameters.

Now, if di is not α-satisfiable then (Li | di)µ`(α) = > = (Li | di)µ`(α) and it is easy
to see that µ`-satisfiability is preserved even for both conclusions.

If on the other hand di is α-satisfiable then (Li | di)µ`(α) = Li(mi) and (Li |
di)µ`(α) = Li(mi), for some integer vector mi. Thus Z must satisfy either Λµ`(α) ∪
{Li(mi)← >} ∪ Γ ∪ Φ ∪ {D} or Λµ`(α) ∪ {Li(mi)← >} ∪ Γ ∪ Φ ∪ {D}.

In conclusion in any case one of the consequences is µ`-satisfiable.

Extend) The premise of Extend(d) has the form Λ · Γ ` Φ, D, while its conclusion has
the form (Λ, Li | di) · Γ ` Φ, D, where Li | di is Γ-contradictory with Λ.

Suppose that Λ·Γ ` Φ, D is µ`-satisfiable. Then there must be a parameter valuation
α such that Λµ`(α)∪Γ∪Φ∪{D} is LIA-satisfiable in some Σ-interpretation Z that agrees
with α on the parameters. It follows that α ∈ Mods(Γ) (because otherwise Z cannot
satisfy Γ).

As Li | di is Γ-contradictory with Λ, with the same argumentation as for Close(d)
above it follows that (in particular) Z cannot LIA-satisfy Λµ`(α) ∪ {Li(mi)← >}∪ Γ ∪
Φ∪{D}. Hence Z must LIA-satisfy Λµ`(α)∪{Li(mi)← >}∪Γ∪Φ∪{D}. Equivalently,
(Λ, Li | di) · Γ ` Φ, D is µ`-satisfiable, which was to be shown.

Domain Split) The premise of Domain Split has the form Λ·Γ ` Φ, D, while its conclusions
have respectively the form Λ · (Γ, c .=µ` di) ` Φ, D and Λ · (Γ,¬(c .=µ` di)) ` Φ, D, where
α |=Z c

.=µ` di for some α ∈ Mods(Γ).
Suppose that Λ·Γ ` Φ, D is µ`-satisfiable. Then there must be a parameter valuation

α such that Λµ`(α)∪Γ∪Φ∪{D} is LIA-satisfiable in some Σ-interpretation Z that agrees
with α on the parameters.

As Z agrees with α on the parameters, if α |=Z c
.=µ` di then Z satisfies c .=µ`

di. And if α 6|=Z c
.=µ` di then α |=Z ¬(c .=µ` di) and so Z satisfies ¬(c .=µ` di).

Corresponding to the case that applies, it follows that one of the consequences is µ`-
satisfiable.
Ground Split) The proof for this case is very similar to the case of Domain Split and is
omitted.

Proposition 6.1 (Soundness) For all admissible clause sets Φ and admissible sets of
closed constraints Γ, if there is a refutation tree of Φ and Γ, then Γ ∪ Φ is LIA-
unsatisfiable.

Proof. Let T be a refutation tree of Φ and Γ. As observed in the beginning of Section 6.1,
to prove that Γ∪Φ is LIA-unsatisfiable it suffices to prove that the initial sequent Λ·Γ ` Φ
is µ`-unsatisfiable, i.e. the sequent in the root of T.
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If T has only one node N , the root, then the clause set Φ of the initial sequent must
contain �← >, and hence Γ ∪ Φ is trivially LIA-unsatisfiable.17

If T has more than one node N , we can assume by induction that all the children
nodes of N are µ`-unsatisfiable. But then we can conclude that N is µ`-unsatisfiable as
well by the contrapositive of Lemma A.4.

A.4 Section 6.3

We assume the same setup as in Section 6.3. That is, Φ is an admissible clause set, Γ a
finite set of admissible closed constraints, D is a fair derivation of Φ and Γ that is not a
refutation, B = (Ni)i<κ is an exhausted branch in its limit tree, and Λi · Γi ` Φi means
the sequent labeling the node Ni in B, for all i < κ.

Lemma 6.6 For all i < κ, Γi is satisfiable, and there is an i < κ such that for all j ≥ i,
Γi = Γj = ΓB.

Proof. First we show that Γi is satisfiable, for all i < κ. This however follows easily
from the facts that, by definition, Γ0 ( = Γ) is satisfiable, and that the only derivation
rules that can manipulate the Γi’s, Domain Split and Ground Split, preserve satisfiability
(and admissibility) in both conclusions. This is guaranteed by the last condition in the
definition of each rule.

Note that the constraint added by Domain Split or Ground Split to its context has
the effect of strictly strengthening a finite range constraint for one or more parameters
(recall that by admissibility every parameter is restricted to a finite range). Because
the signature Π for parameters is finite, and satisfiability of the Γi’s is preserved, these
strengthenings can occur only finitely many times. Thus, for some i < κ and all j ≥ i,
Γi = Γj = ΓB and it follows that ΓB is satisfiable.

We need an additional lemma.

Lemma A.7 (Persistent Productivity) Let K1 be a context literal in ΛB, K2 a context
literal and α ∈ Mods(ΓB). If K1 α-produces K2 wrt. ΛB then there is an i < κ such that
for all j ≥ i, K1 is in Λj and K1 α-produces K2 wrt. Λj . Furthermore, α ∈ Mods(Γj).

Proof. That K1 is in ΛB entails that K1 is in Λi, for some i < κ. As derivations only
grow contexts (but never shrink them), it follows that K1 is in Λj , for all j ≥ i. For the
same reason, from α ∈ Mods(ΓB) it follows α ∈ Mods(Γj).

Suppose, ad absurdum, that K1 does not α-produce K2 wrt. Λk, for some k ≥ j.
This means that there is a context literal L(x) | d in Λk that α-covers L(x) | c2 and
such that α |=Z c1

.
<µ` d. That K is in Λk entails, by construction, that K is in ΛB,

too. But then, K1 does not α-produce K2 wrt. ΛB either, a plain contradiction to what
was concluded above.

17Admissible clause sets cannot contain �← >, but the proof holds true even if they did.
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As said, the following proposition is the main result for proving the calculus complete.

Proposition 6.7 (Model Construction) If (�← >) /∈ ΦB then, for every α ∈ Mods(ΓB),
ZΛB,α is a model of ΦB.

Proof. Assume that (�← >) /∈ ΦB. Chose any α ∈ Mods(ΓB) arbitrarily.
Clearly, ΛB · ΓB is admissible and hence ZΛB,α is indeed defined. Suppose ad ab-

surdum that ZΛB,α is not a model of ΦB. This means that there is a constrained clause
D[x] = L1(x1) ∨ · · · ∨ Lk(xk) ← c[x] with k ≥ 1 from ΦB that is falsified by ZΛB,α (it
holds k ≥ 1 because the clause set Φ is admissible). That is, there is a vector m of
constants from Z such that D[m] is falsified by ZΛ,α. By Lemma 4.9 then there is an
α-productive context unifier d of D against ΛB · ΓB where m is an α-solution of d. For
later use note that thus d is α-satisfiable.

The next step in the proof is to argue with Definition 6.4 (exhausted branch) and
arrive at a contradiction in each case of an exhaustive case analysis. This case analysis
has to be prepared a little, though.

That D is in ΦB entails that D ∈ Φi, for all i < κ. From the fact that d is an
α-productive context unifier of D against ΛB ·ΓB it follows with Lemma A.7, by taking
the maximum of the indices ι obtained from it, that there is an ι < κ such that for all
j ≥ ι, d is an α-productive context unifier of D against Λj · Γj . More specifically, in
current notation, the context literals Ki, for i = 1, . . . , k, all are in Λj and Ki α-produces
K ′i wrt. Λj . Furthermore, with α ∈ Mods(Γj) and Lemma 4.5 it follows that Λj does
not α-produce any literal K ′i of d.

Now fix any such j ≥ ι big enough that it also satisfies Γj′ = ΓB, for all j′ ≥ j. Such
an index j must exist by Lemma 6.6.

Together, in terms of Definition 6.3 we have now shown that,

for all j′ ≥ j, d is not α-redundant in Λj′ · Γj′ . (5)

The conclusion (5) will lead to various contradictions below.
From Definition 6.4-(ii) it follows that Close(d) is not applicable to Λj ·Γj ` Φj with

selected clause D. Thus there is a literal Li(xi) | di of d that is not Γj-contradictory
with Λj . (Such a literal must exist because k ≥ 1.) In particular, thus, Γj 6|=Z ci

.=µ` di,
where ci and di are as in Definition 4.8.

We analyze this situation wrt. the parameter valuation α from above, by a case
analysis whether α |=Z ci

.=µ` di holds, or not.

1. α |=Z ci
.=µ` di. Recall that j was chosen big enough so that (in particular) Γj = ΓB.

From α ∈ Mods(ΓB) it follows α ∈ Mods(Γj). Then it is easy to see that Domain Split(d)
is applicable to Λj ·Γj ` Φj with selected clause D (by virtue of the context unifier literal
Li(xi) | di). By Definition 6.4-(i) then, d must be α-redundant in Λj′ · Γj′ , for some
j′ ≥ j. This is a direct contradiction to (5). Hence case (1) is impossible.
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2. α 6|=Z ci
.=µ` di. From the application of Lemma 4.9 above we know that d and

hence di is α-satisfiable. In the terminology of Definition 4.8 then, the literal Li(xi) | di
of d is a remainder literal. Various subcases apply.

2.1. Li(xi) | di is contradictory with Λj ·Γj . This means that there is a context literal
Li(xi) | c in Λj and a parameter evaluation α′ ∈ Mods(Γj) such that α′ |=Z c

.=µ` di.
Recall from above Γj 6|=Z ci

.=µ` di. But then, Domain Split(d) is applicable to Λj · Γj
with context unifier literal Li(xi) | di. Again by Definition 6.4-(i) then, d must be α-
redundant in Λj′ · Γj′ , for some j′ ≥ j. This is a direct contradiction to (5). Hence case
(2.1) is impossible.

2.2. Li(xi) | di is not contradictory with Λj · Γj .

2.2.1. Li(xi) | di is contradictory with Λj · Γj .

2.2.1.1. Li(xi) | di is Γj-contradictory with Λj . Suppose that there is a Li(xi) | ei in
Λj that, for all α′ ∈ Mods(Γj), α′-extends Li(xi) | di. (This will lead to a contradiction.)

Thus, in particular, Li(xi) | ei α-extends Li(xi) | di. By Definition 4.1 then, Li(xi) |
ei α-covers Li(xi) | di and α |=Z ei

.=µ` di. The assumption for case (2) is α 6|=Z ci
.=µ`

di. From above we know that di is α-satisfiable. Because di is stronger than ci, ci is
α-satisfiable, too. By Lemma 3.2 then, α |=Z ci

.
<µ` di or α |=Z di

.
<µ` ci. However,

di is stronger than ci, which makes the latter case impossible. Thus, α |=Z ci
.
<µ` di.

With α |=Z ei
.=µ` di it follows α |=Z ci

.
<µ` ei.

Alltogether then, by virtue of Li(xi) | ei in Λj , this means that Li(xi) | ci cannot
α-produce Li(xi) | di wrt. Λj . This is a contradiction to the conclusion above that d is
an α-productive context unifier of D against Λj · Γj , for all j ≥ ι.

Thus, there is no Li(xi) | ei in Λj that, for all α′ ∈ Mods(Γj), α′-extends Li(xi) | di.
But then, Extend(d) is applicable to Λj · Γj with remainder literal Li(xi) | di. Again
by Definition 6.4-(i) then, d must be α-redundant in Λj′ · Γj′ , for some j′ ≥ j, a direct
contradiction to (5). Hence case (2.2.1.1) is impossible.

2.2.1.2. Li(xi) | di is not Γj-contradictory with Λj . The assumption of case (2.2.1),
that Li(xi) | di is contradictory with Λj · Γj , means that there is a context literal
Li(xi) | c in Λj and a parameter evaluation α′ ∈ Mods(Γj) such that α′ |=Z c

.=µ` di.
That Li(xi) | di is not Γj-contradictory with Λj entails in particular Γj 6|=Z ci

.=µ` di.
But then, Domain Split(d) is applicable to Λj ·Γj with remainder literal Li(xi) | di, and
the same argumentation as in case (1) applies.

2.2.2. Li(xi) | di is not contradictory with Λj · Γj . Here, neither Li(xi) | di nor
Li(xi) | di is contradictory with Λj · Γj . But then, Split(d) is applicable to Λj · Γj
with remainder literal Li(xi) | di. Once more by Definition 6.4-(i) then, d must be
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α-redundant in Λj′ · Γj′ , for some j′ ≥ j. This is a direct contradiction to (5). Hence
case (2.2.2) is impossible.

In sum, each case has led to a contradiction now. Consequently, the assumption
that ZΛB,α is not a model of ΦB is false, and the proof is complete.
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