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• Decidability Modulo Theories
• The Shostak’s Method
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The Decision Problem: Recap

• We are interested in proving the unsatisfiability (or dually,
validity) of first-order formulas.

• The general decision problem is to provide a yes or no
answer to any question of satisfiability or validity.

• There is no decision procedure for arbitrary first order
formulas.

• However, we may be able to get a decision procedure in two
special cases.
◦ Restrict the syntax of the formula.
◦ Restrict the models under consideration. For example,

only check validity in models of some set T of axioms.
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Satisfiability Modulo Theories

We focus again on (un)satisfiability in a specific theory.

We now consider a general method for a class of theories called
Shostak theories.

Recall:
A formula ϕ is satisfiable if there exists a model M and a
variable assignment s such that |=M ϕ[s].

Γ |= ϕ means that for every model M and variable assignment s,
if |=M Γ[s], then |=M ϕ[s].
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Shostak’s Method

Robert Shostak published a paper in 1984 which detailed a
particular strategy for deciding validity of quantifier-free formulas
in certain kinds of theories.

Unfortunately, the original procedure contained many errors and
a number of papers have since been dedicated to correcting
them.

We will look at a simplified version of Shostak’s procedure which
is easily proved correct, yet still contains most of the essential
ideas introduced by the original paper.
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Equations in Solved Form

A set S of equations is said to be in solved form iff the left-hand
side of each equation in S is a variable which appears only once
in S.

We call the left-hand sides variables of a set in solved form
solitary variables.

A set S of equations in solved form defines an idempotent
substitution: the one which replaces each solitary variable with
its corresponding right-hand side.

If X is an expression or set of expressions, we denote the result
of applying this substitution to X by S(X).
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Equations in Solved Form

An interesting property of equations in solved form is the
following.

Solved Form Theorem If T is a theory with signature Σ and S is a
set of Σ-equations in solved form, then T ∪ S |= ϕ iff T |= S(ϕ).
Proof
Clearly, T ∪ S |= ϕ iff T ∪ S |= S(ϕ).
Thus we only need to show that T ∪ S |= S(ϕ) iff T |= S(ϕ).
The “if” direction is trivial.
To show the other direction, assume that T ∪ S |= S(ϕ). Any
model of T can be made to satisfy T ∪ S by assigning any value
to the non-solitary variables of S , and then choosing the value of
each solitary variable to match the value of its corresponding
right-hand side.

(over)
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Equations in Solved Form

Since none of the solitary variables occur anywhere else in S
this assignment is well-defined and satisfies S.
By assumption then, this model and assignment also satisfy
S(ϕ), but none of the solitary variables appear in S(ϕ), so the
initial arbitrary assignment to non-solitary variables must be
sufficient to satisfy S(ϕ).
Thus it must be the case that every model of T satisfies S(ϕ)
with every variable assignment. 2

By setting ϕ to F (false), we obtain the following.

Corollary If T is a satisfiable theory with signature Σand S is a
set of Σ-equations in solved form, then T ∪ S is satisfiable.
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Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if the
following conditions hold.

1. Σ contains no predicate symbols.

2. T is convex, that is, for every conjunction ϕ of literals and
set x1 ≈ y1, . . . xn ≈ yn of equations between variables,
if T ∪ ϕ |= x1 = y1 ∨ · · · ∨ xn = yn, then T ∪ ϕ |= xi ≈ yi for
some 1 ≤ i ≤ n.

3. T has a canonizer canon, a computable function from
Σ-terms to Σ-terms, such that T |= a ≈ b iff
canon(a) = canon(b).

(over)
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Shostak Theories

4. T has a solver solve, a computable function from
Σ-equations to sets of formulas defined as follows:
(a) If T |= a 6≈ b, then solve(a ≈ b) = {F}.
(b) Otherwise, solve(a ≈ b) returns a set S of equations in

solved form such that

T |= (a ≈ b) ↔ ∃w. S

where w is the set of variables that appear in S but not in
a or b.
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Canonizer

The canonizer is used to determine whether a specific equality
is entailed by a set of equations in solved form.

Theorem (canon) If S is a set of Σ-equations in solved form, then

T ∪ S |= a ≈ b iff canon(S(a)) = canon(S(b)).

Proof
By the Solved Form Theorem, T ∪ S |= a ≈ b iff T |= S(a) ≈ S(b).
But T |= S(a) ≈ S(b) iff canon(S(a)) = canon(S(b)), by the
definition of canon. 2
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Procedure Sh

The procedure below checks the satisfiability in T of a set Γ set
of equalities and a set ∆ of disequalities.

Sh(Γ, ∆, canon, solve)
1. S := ∅;
2. while Γ 6= ∅ do begin
3. Remove some equality a ≈ b from Γ;
4. a′ := S(a); b′ := S(b);
5. S ′ := solve(a′ ≈ b′);
6. if S ′ = {F} then return false

7. else S := S ′(S) ∪ S ′;
8. end
9. if canon(S(a)) = canon(S(b))

for some a 6≈ b ∈ ∆ then return false

10. else return true
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Correctness of Procedure Sh

Termination of the procedure is trivial since each step terminates
and each time line 3 is executed the size of Γ is reduced.

The following five lemmas are needed before proving
correctness.

Lemma 1 If T ′ is a theory, Γ and Θ are sets of formulas, and S is
a set of equations in solved form, then for any formula ϕ,

T ′ ∪ Γ ∪ Θ ∪ S |= ϕ iff T ′ ∪ Γ ∪ S(Θ) ∪ S |= ϕ.

Proof Follows trivially from the fact that Θ ∪ S and S(Θ) ∪ S are
satisfied by exactly the same models and variable assignments.
2
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Correctness of Procedure Sh

Lemma 2 If Γ is any set of formulas, then for any formula ϕ, and
Σ-terms a and b,

T ∪ Γ ∪ {a ≈ b} |= ϕ iff T ∪ Γ ∪ solve(a ≈ b) |= ϕ.

Proof
⇒: Given that T ∪ Γ ∪ {a ≈ b} |= ϕ, suppose that
M |=ρ T ∪ Γ ∪ solve(a ≈ b).
It is easy to see from the definition of solvethat M |=ρ a ≈ b and
hence by the hypothesis, M |=ρ ϕ.

(over)
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Correctness of Procedure Sh

Lemma 2 (cont.) If Γ is any set of formulas, then for any formula ϕ,
and Σ-terms a and b,

T ∪ Γ ∪ {a ≈ b} |= ϕ iff T ∪ Γ ∪ solve(a ≈ b) |= ϕ.

Proof
⇐: Given that T ∪ Γ ∪ solve(a ≈ b) |= ϕ, suppose that
M |=ρ T ∪ Γ ∪ {a ≈ b}.
Since T |= (a ≈ b) ↔ ∃w. solve(a ≈ b), there exists a modified
assignment ρ∗ which assigns values to all the variables in w and
satisfies solve(a ≈ b)but is otherwise equivalent to ρ. Then, by
the hypothesis, M |=ρ∗ ϕ.
But the variables in w are fresh variables, so they do not appear
in ϕ, meaning that changing their values cannot affect whether ϕ

is true. Thus, M |=ρ ϕ.
2
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Correctness of Procedure Sh

Lemma 3 Let Γ, {a ≈ b}, and S be sets of Σ-formulas, with S in
solved form. If S ′ = solve(S(a ≈ b)) and S ′ 6= {F}, then for every
formula ϕ,

T ∪ Γ ∪ {a ≈ b} ∪ S |= ϕ iff T ∪ Γ ∪ S ′ ∪ S ′(S) |= ϕ.

Proof

T ∪ Γ ∪ {a ≈ b} ∪ S |= ϕ

iff T ∪ Γ ∪ {S(a ≈ b)} ∪ S |= ϕ by Lemma 1

iff T ∪ Γ ∪ S ′ ∪ S |= ϕ by Lemma 2

iff T ∪ Γ ∪ S ′ ∪ S ′(S) |= ϕ by Lemma 1
2
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Correctness of Procedure Sh

Lemma 4 During the execution of Procedure Sh, S is always in
solved form.

Proof Clearly, S is in solved form initially. Consider one iteration.
By construction, a′ and b′ do not contain any of the solitary
variables of S, and thus by the definition of solve, S ′ doesn’t
either. Furthermore, if S ′ = {F} then the procedure terminates
at line 6. Thus, at line 7, S ′ must be in solved form. Applying S ′

to S guarantees that none of the solitary variables of S ′ appear
in S, so the new value of S is also in solved form. 2
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Correctness of Procedure Sh

Lemma 5 Let Γn and Sn be the values of Γ and S after the while
loop in Procedure Sh has been executed n times. Then for each
n, and any formula ϕ, the following invariant holds:

T ∪ Γ0 |= ϕ iff T ∪ Γn ∪ Sn |= ϕ.

Proof The proof is by induction on n. For n = 0, the invariant
holds trivially. Now suppose the invariant holds for some k ≥ 0.
Consider the next iteration.

T ∪ Γ0 |= ϕ

iff T ∪ Γk ∪ Sk |= ϕ by Induction Hypothesis
iff T ∪ Γk+1 ∪ {a ≈ b} ∪ Sk |= ϕ by Line 3
iff T ∪ Γk+1 ∪ S ′ ∪ S ′(Sk) |= ϕ by Lemmas 3 and 4

iff T ∪ Γk+1 ∪ Sk+1 |= ϕ by Line 7
2
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Correctness of Procedure Sh

Theorem Let T be a Shostak theory with signature Σ, canonizer
canon, and solver solve. For all sets Γ of Σ-equalities and sets ∆
of Σ-disequalities, T ∪ Γ ∪ ∆ is satisfiable iff
Sh(Γ, ∆, canon, solve) = true .

Proof
⇒: Suppose Sh(Γ, ∆, canon, solve) 6= true .
Since the procedure terminates for all inputs, it must be that
Sh(Γ, ∆, canon, solve) = false .
If the procedure terminates at line 9, then
canon(S(a)) = canon(S(b)) for some a 6≈ b ∈ ∆.
It follows from the canon theorem and Lemma 5 that
T ∪ Γ |= a ≈ b, so clearly T ∪ Γ ∪ ∆ is not satisfiable.
The other possibility when Sh(Γ, ∆, canon, solve) = false is that the
procedure terminates at line 6.

(over)
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Correctness of Procedure Sh

Theorem (cont) [...] For all sets Γ of Σ-equalities and sets ∆ of
Σ-disequalities, T ∪ Γ ∪ ∆ is satisfiable iff
Sh(Γ, ∆, canon, solve) = true .

Proof (cont.)
Suppose the loop has been executed n times and that Γn and
Sn are the values of Γ and S at the end of the last loop.
It must be the case that T |= a′ 6≈ b′, so T ∪ {a′ ≈ b′} is
unsatisfiable.
Clearly then, T ∪ {a′ ≈ b′} ∪ Sn is unsatisfiable, so by Lemma 1,
T ∪ {a ≈ b} ∪ Sn is unsatisfiable. But {a ≈ b}is a subset of Γn,
so T ∪ Γn ∪ Sn must be unsatisfiable. Thus by Lemma 5, T ∪ Γ is
unsatisfiable.

(over)
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Correctness of Procedure Sh

Theorem (cont) [...] T ∪ Γ ∪ ∆ is satisfiable iff
Sh(Γ, ∆, canon, solve) = true .

Proof
⇐: Suppose that Sh(Γ, ∆, canon, solve) = true . Then the
procedure terminates at line 10.
By Lemma 4, S is in solved form. Let ∆ be the disjunction of
equalities equivalent to ¬(∆).
Since the procedure does not terminate at line 9, T ∪ S does not
entail any equality in ∆. By the convexity of T , it follows that
T ∪ S 6|= ∆.
Now, since T ∪ S is satisfiable by the corollary to the Solved Form
Theorem, it follows that T ∪ S ∪ ∆ is satisfiable.
But by Lemma 5, T ∪ Γ |= ϕ iff T ∪ S |= ϕ, so in particular
T ∪ S |= Γ. Thus T ∪ S ∪ ∆ ∪ Γ is satisfiable, and hence
T ∪ Γ ∪ ∆ is satisfiable. 2
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