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Outline

• Rewriting
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Theorem Proving. Unpublished manuscript. Used by
permission.

Spring 04, 22c:295 Notes: Rewriting – p.2/25

A Change in Notation

From now on, when we write
Γ |= ϕ,

we will assume that all the free variables of ϕ and of each
formula in Γ are universally quantified.

This is done for convenience, but note that it does change the
meaning of |= for non-closed formulas.

Example
Without implicit quantifiers: p(x) 6|= p(y).
With the implicit quantifiers: p(x) |= p(y).
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Rewriting

Consider the general problem of establishing E |= s = t where E

is a set of equations.

Congruence closure handles the case when all equations are
ground. (How?)

There cannot be a simple procedure for the more general case
because first order logic with equality is, in general, undecidable.

However, often the kind of equational reasoning needed is
straightforward: equations are used in a predictable direction to
simplify expressions.

Using equations in a directional fashion is called rewriting, and
there are indeed cases when this technique gives us a decision
procedure.
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Rewriting

Suppose t is a term and l = r is an equation.

We say that t′ results from rewriting t with l = r iff
there is a subterm s of t and a substitution θ such that

1. s = θ(l),

2. s′ = θ(r) and

3. t′ is the result of replacing an occurrence of s by s′ in t.

We call rewrite rules any (oriented) equations like l = r above.

Given a set R of rewrite rules, we write t −→R t′ iff there is some
rule (l = r) ∈ R which rewrites t to t′.
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Rewriting

Theorem (Soundness or Rewriting) If t −→R t′, then R |= t = t′.

Proof Every rewrite can be duplicated by a single instantiation
followed by a chain of congruences. 2

What about completeness?

It depends on the rewrite rules.

When a set of (oriented) equations R is canonical, the question
of whether R |= s = t for two terms s and t can be answered by
rewriting.

We will make this more precise later.

Spring 04, 22c:295 Notes: Rewriting – p.6/25

Abstract Reduction Relations

An abstract reduction relation is any binary relation on a set X .

We will denote a generic abstract reduction relation by −→.

Every set R of rewrite rules induces an reduction relation on
terms. We will denote that relation by −→R.

We will also denote by
• ←− the inverse of −→ (i.e. x −→ y iff y ←− x).

• −→+ the transitive closure of −→.
• −→∗ the reflexive-transitive closure of −→.
• ←→∗ the reflexive-symmetric-transitive closure of −→.
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Abstract Reduction Relations

Let −→ be an abstract reduction relation on some set X .

An element x ∈ X is said to be in normal form (NF) with respect
to −→ iff there is no y ∈ X such that x −→ y.

The relation −→ is said to be terminating, strongly normalizing
(SN), or noetherian iff there is no infinite reduction sequence:

x0 −→ · · · −→ xn −→ · · ·

Note that −→ is terminating iff←− is well-founded.
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Confluence

Let −→ be an abstract reduction relation on some set X .

• −→ has the diamond property iff whenever x −→ y and
x −→ y′, there is a z such that y −→ z and y′ −→ z.

• −→ is confluent or Church-Rosser (CR) if −→∗ has the
diamond property.

• −→ is canonical if it is confluent and terminating.

• −→ is weakly confluent or weakly Church-Rosser (WCR) if
whenever x −→ y and x −→ y′, there is a z such that
y −→∗ z and y′ −→∗ z.

These notions are closely related: For instance, the diamond
property implies confluence which implies weak confluence.

Spring 04, 22c:295 Notes: Rewriting – p.9/25

Confluence

Weak confluence does not in general imply confluence, but
adding termination changes the story.

Newman’s Lemma If −→ is terminating and weakly confluent, then
it is confluent.

Proof It suffices to show that if x −→∗ y and x −→∗ y′ with y and y′ in
normal form, then y = y′. (Why?) This can be proved by well-founded
induction on←−. Assume x writes to two normal forms: y and y′. The only
interesting case is when x differs from both y and y′. (Why?) In that case,
x −→ w −→∗ y and x −→ w′ −→∗ y′. By weak confluence, there must
be a z such that w −→∗ z and w′ −→∗ z. Since w and w′ are
predecessors of x wrt←−, by well-founded induction there must be a u such
that y −→∗ u and z −→∗ u, and a u′ such that z −→∗ u′ and y′ −→∗ u′.
But y and y′ are in normal form, so it must be that y = u = z = u′ = y′. 2
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Canonical Rewrite Systems

Theorem If R is a set of rewrite rules, then for all terms s and t,
s←→∗

R t iff R |= s = t.

Let s ↓R t denote that s and t are joinable, i.e., there exists a z

such that s −→∗

R u and t −→∗

R y.

Theorem If −→R is confluent, then for any s and t, s←→∗

R t iff
s ↓R t.

Corollary If −→R is terminating and weakly confluent, then it is
canonical. Therefore, R |= s = t can be decided by rewriting s

and t to normal forms and comparing them.
Proof By Newman’s Lemma, termination and weak confluence imply
confluence. Also, termination implies the existence of normal forms. Thus, by
the above theorems, s and t have the same normal forms iff s ↓R t iff
s←→∗

R t iff R |= s = t. 2
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Reduction Orderings

A binary relation > on terms is said to be a rewrite ordering if it
is an ordering (i.e., an irreflexive and transitive relation) and is
closed under instantiation and simple congruences, i.e.

• It is never the case that t > t.
• If s > t and t > u, then s > u.
• If s > t, then θ(s) > θ(t) for any substitution θ.

• If s > t, then f(u1, . . . , ui−1, s, ui+1, . . . , un) >

f(u1, . . . , ui−1, t, ui+1, . . . , un).

A rewrite ordering > whose converse < is well-founded is said
to be a reduction ordering.
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Reduction Orderings

Lemma If > is a reduction ordering and l > r for each equation
l = r in R, then the rewrite relation −→R is terminating.

Proof It is not hard to see that if s −→R t, then s > t. Thus,
because < is well-founded, −→R must be terminating. 2

By this lemma, reduction orderings are very useful for proving
the termination of a rewrite system R.
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Measure-based Orderings

Let us denote by |t| the number of variables and function symbol
occurrences in t.

We might hope to define a reduction ordering s > t by |s| > |t|.
However, this fails the instantiation property:

If s > t, then θ(s) > θ(t) for any substitution θ.

Example Let θ = {y 7→ f(x, x, x)}.

f(x, x, x) > g(x, y) but θ(f(x, x, x)) 6> θ(g(x, y)).

What can we do to fix this?

Let |t|x denote the number of occurrences of x in t.
Define s > t if |s| > |t| and |s|x > |t|x for each variable x in t.

Exercise Prove that the latter > is a reduction ordering.
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In Search of Less Partial Reduction Orderings

The simple reduction ordering we defined earlier is not total. For
instance, it does not order the following pairs of terms:

• (x ∗ y) ∗ z, x ∗ (y ∗ z)

• x ∗ (y + z), x ∗ y + x ∗ z

To order such terms, we need more sophisticated orderings.

Note While it is unreasonable to expect a reduction ordering to
be total on arbitrary terms, reduction orderings that order more
pairs of terms are preferable.
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Lexicographic Path Orderings (simplified version)

A sequence s1, . . . , sm is lexicographically greater than a
sequence t1, . . . , tm with respect to an ordering > on terms if
there is some 1 ≤ n ≤ m such that si = ti for all i < n and
sn > tn.

Let � be an ordering over function symbols. The lexicographic
path ordering �lpo on terms induced by � is defined as follows:

• f(s1, . . . , sm) �lpo f(t1, . . . , tm) if s1, . . . , sm is
lexicographically greater than t1, . . . , tm wrt �lpo;

• f(s1, . . . , sm) �lpo t if si �lpo t for some 1 ≤ i ≤ m;

• f(s1, . . . , sm) �lpo g(t1, . . . , tn) if f � g and
f(s1, . . . , sm) �lpo ti for each 1 ≤ i ≤ m.
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Properties of the LPO

For every ordering � over function symbols:

• �lpo is a rewrite ordering;

• �lpo has the subterm property, i.e., s �lpo t for all proper
subterms t of s;

• ≺lpo is well-founded whenever ≺ is
(making �lpo a reduction ordering).

• if s �lpo t then vars(t) ⊆ vars(s);

Any rewrite ordering with the subterm property is called a
simplification ordering.
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Checking for confluence

Once we have established that a rewrite systems R is
terminating (perhaps using an appropriate reduction ordering),
we only need to check for weak confluence to conclude that R is
confluent and hence canonical.

Example Consider the system G consisting of the group axioms:
• (x · y) · z = x · (y · z)

• 1 · x = x

• i(x) · x = 1

An LPO is enough to show that G is terminating here (Exercise:
prove it). Is it confluent?

The term (i(x) · x) · y can be rewritten to different terms that are
not joinable. (How?) Thus, G is not confluent.
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Checking for confluence

How do we check for (weak) confluence in general?

Given termination, we can decide weak confluence by
discovering whether any starting term s can be rewritten to
different normal forms.

Suppose s −→R t1 and s −→R t2.
There are three possible situations:
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Critical Pairs

• The two rewrites apply to disjoint subterms. Example:
(1 · a) · (i(b) · b)→ a · (i(b) · b), with rule 1 · x = x, and
(1 · a) · (i(b) · b)→ (1 · a) · 1, with rule i(x) · x = 1.

• One rewrite applies to a term that is at or below position
corresponding to a variable in the other rewrite. Example:
(b · c) · (1 · a)→ (b · c) · a, with 1 · x = x, and
(b · c) · (1 · a)→ b · (c · (1 · a)), with (x · y) · z = x · (y · z).

• One rewrite applies to a term that is inside the term the
other rewrite applies to, but is not at or below a variable
position in the other rewrite rule. Example:
(i(a) · a) · b→ 1 · b, with i(x) · x = 1, and
(i(a) · a) · b→ i(a) · (a · b) with (x · y) · z = x · (y · z).

The first two cases cannot break weak confluence. (Why?)
Thus, only the third case needs to be considered.
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Critical Pairs

Let t[s] denote that s is a (possibly non-proper) subterm of t and
let t[s′] denote the term obtained by replacing s with s′ in t.

Consider R1 = {l1 = r1} and R2 = {l2 = r2} with
vars(R1) ∩ vars(R2) = ∅.

If l1[s] with s non-variable, and θ is a (idempotent) most general
unifier of s and l2, then

θ(l1) −→R1
θ(r1) and θ(l1) −→R2

θ(l1[θ(r2)])

The pair 〈θ(r1), θ(l1[θ(r2)])〉 is called a critical pair.

Theorem A term rewriting system is weakly confluent iff all its
critical pairs are joinable.
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Critical Pairs

Example What are the critical pairs for the group axioms?

1. (x1 · y) · z = x1 · (y · z)

2. 1 · x2 = x2

3. i(x3) · x3 = 1

1 and 2 with θ = {x1 7→ 1, y 7→ x2} gives
〈1 · (x2 · z), x2 · z〉.

1 and 3 with θ = {x1 7→ i(x3), y 7→ x3} gives
〈i(x3) · (x3 · z), 1 · z〉.

1 and 1’ with θ = {x1 7→ x′

1 · y
′, y 7→ z′} gives

〈(x′

1 · y
′) · (z′ · z), (x′

1 · (y
′ · z′)) · z〉.

The first and third pairs are joinable, but the second is not.
Thus this rewrite system is not weakly confluent.
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Completion

It is straightforward to check whether each critical pair is
joinable. However, we can be more ambitious.

Suppose 〈s, t〉 is a non-joinable critical pair, which means that
normal form of s is s′, the normal form of t is t′, and s′ 6= t′.

We can imagine adding s′ = t′ or t′ = s′ to our rewrite system to
achieve confluence.

The process of repeatedly adding normalized critical pairs to the
rewrite system is known as completion.

Two things can go wrong:

• It may not be possible to add s′ = t′ or t′ = s′ while
respecting the term ordering.

• The completion process may run forever.

However, often completion is successful.
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Interreduction

Completion often results in a large set of rewrite rules.

A natural question is whether the set can be reduced.

Theorem Let −→R be a canonical (i.e. terminating and confluent)
abstract reduction relation on a set X . Suppose another
abstract reduction relation −→S has the following two properties:

• For any x, y ∈ X , if x −→S y, then x −→+

R y.

• For any x, y ∈ X , if x −→R y, then there is a y′ ∈ X with
x −→S y′.

Then −→S is also canonical and defines the same equivalence.
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Interreduction

Corollary If R is a canonical rewrite system and (l = r) ∈ R, then
if l is reducible by the other equations, the system R− {l = r} is
also canonical and defines the same equational theory.

Corollary If R is a canonical rewrite system and (l = r) ∈ R, let S

be the result of replacing the equation l = r in R with l = r′

where r′ is the R-normal form of r. Then S is also canonical and
defines the same equational theory.
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