22c:295 Seminar in AI - Decision Procedures

Rewriting

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of lowa

Copyright 2004-05 - Cesare Tinelli and Clark Barrett. a
${ }^{a}$ These notes were developed from a set of lecture notes originally written by Clark Barrett at New York University. These notes are copyrighted material and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of the copyright holders.

A Change in Notation

From now on, when we write

$$
\Gamma \models \varphi,
$$

we will assume that all the free variables of φ and of each formula in Γ are universally quantified.

This is done for convenience, but note that it does change the meaning of \models for non-closed formulas.

Example

Without implicit quantifiers: $p(x) \not \vDash p(y)$.
With the implicit quantifiers: $p(x) \models p(y)$.

Spring 04, 220:295 Notes: Rewriting - p. 3125

Rewriting

Consider the general problem of establishing $E \models s=t$ where E is a set of equations.
Congruence closure handles the case when all equations are ground. (How?)
There cannot be a simple procedure for the more general case because first order logic with equality is, in general, undecidable.

However, often the kind of equational reasoning needed is straightforward: equations are used in a predictable direction to simplify expressions.
Using equations in a directional fashion is called rewriting, and there are indeed cases when this technique gives us a decision procedure.

Rewriting

Suppose t is a term and $l=r$ is an equation.
We say that t^{\prime} results from rewriting t with $l=r$ iff
there is a subterm s of t and a substitution θ such that

1. $s=\theta(l)$,
2. $s^{\prime}=\theta(r)$ and
3. t^{\prime} is the result of replacing an occurrence of s by s^{\prime} in t.

We call rewrite rules any (oriented) equations like $l=r$ above.
Given a set R of rewrite rules, we write $t \longrightarrow_{R} t^{\prime}$ iff there is some rule $(l=r) \in R$ which rewrites t to t^{\prime}.

Abstract Reduction Relations

An abstract reduction relation is any binary relation on a set X.
We will denote a generic abstract reduction relation by \longrightarrow.
Every set R of rewrite rules induces an reduction relation on terms. We will denote that relation by \longrightarrow_{R}.
We will also denote by

- \longleftarrow the inverse of \longrightarrow (i.e. $x \longrightarrow y$ iff $y \longleftarrow x$).
$-\longrightarrow^{+}$the transitive closure of \longrightarrow.
- \longrightarrow * the reflexive-transitive closure of \longrightarrow.
- $\longleftrightarrow{ }^{*}$ the reflexive-symmetric-transitive closure of \longrightarrow.

Rewriting

Theorem (Soundness or Rewriting) If $t \longrightarrow_{R} t^{\prime}$, then $R \models t=t^{\prime}$.
Proof Every rewrite can be duplicated by a single instantiation
followed by a chain of congruences.
What about completeness?
It depends on the rewrite rules.
When a set of (oriented) equations R is canonical, the question of whether $R \models s=t$ for two terms s and t can be answered by rewriting.

We will make this more precise later.

Abstract Reduction Relations

Let \longrightarrow be an abstract reduction relation on some set X.
An element $x \in X$ is said to be in normal form (NF) with respect to \longrightarrow iff there is no $y \in X$ such that $x \longrightarrow y$.

The relation \longrightarrow is said to be terminating, strongly normalizing (SN), or noetherian iff there is no infinite reduction sequence:

$$
x_{0} \longrightarrow \cdots \longrightarrow x_{n} \longrightarrow \cdots
$$

Note that \longrightarrow is terminating iff \longleftarrow is well-founded.

Confuence

Let \longrightarrow be an abstract reduction relation on some set X.

- \longrightarrow has the diamond property iff whenever $x \longrightarrow y$ and $x \longrightarrow y^{\prime}$, there is a z such that $y \longrightarrow z$ and $y^{\prime} \longrightarrow z$.
- \longrightarrow is confluent or Church-Rosser (CR) if $\longrightarrow *$ has the diamond property.
- \longrightarrow is canonical if it is confluent and terminating.
- \longrightarrow is weakly confluent or weakly Church-Rosser (WCR) if whenever $x \longrightarrow y$ and $x \longrightarrow y^{\prime}$, there is a z such that $y \longrightarrow{ }^{*} z$ and $y^{\prime} \longrightarrow^{*} z$.

These notions are closely related: For instance, the diamond property implies confluence which implies weak confluence.

Canonical Rewrite Systems

Theorem If R is a set of rewrite rules, then for all terms s and t,
$s \longleftrightarrow{ }_{R}^{*} t$ iff $R \models s=t$.
Let $s \downarrow_{R} t$ denote that s and t are joinable, i.e., there exists a z such that $s \longrightarrow_{R}^{*} u$ and $t \longrightarrow{ }_{R}^{*} y$.

Theorem If \longrightarrow_{R} is confluent, then for any s and $t, s \longleftrightarrow{ }_{R}^{*} t$ iff $s \downarrow_{R} t$.

Corollary If \longrightarrow_{R} is terminating and weakly confluent, then it is canonical. Therefore, $R \models s=t$ can be decided by rewriting s and t to normal forms and comparing them.
Proof By Newman's Lemma, termination and weak confluence imply confluence. Also, termination implies the existence of normal forms. Thus, by the above theorems, s and t have the same normal forms iff $s \downarrow_{R} t$ iff

$$
s \longleftrightarrow{ }_{R}^{*} t \text { iff } R \models s=t .
$$

Confuence

Weak confluence does not in general imply confluence, but adding termination changes the story.

Newman's Lemma If \longrightarrow is terminating and weakly confluent, then it is confluent.

Proof It suffi ces to show that if $x \longrightarrow * y$ and $x \longrightarrow^{*} y^{\prime}$ with y and y^{\prime} in normal form, then $y=y^{\prime}$. (Why?) This can be proved by well-founded induction on \longleftarrow. Assume x writes to two normal forms: y and y^{\prime}. The only interesting case is when x differs from both y and y^{\prime}. (Why?) In that case, $x \longrightarrow w \longrightarrow^{*} y$ and $x \longrightarrow w^{\prime} \longrightarrow^{*} y^{\prime}$. By weak confluence, there must be a z such that $w \longrightarrow^{*} z$ and $w^{\prime} \longrightarrow{ }^{*} z$. Since w and w^{\prime} are predecessors of x wrt \longleftarrow, by well-founded induction there must be a u such that $y \longrightarrow^{*} u$ and $z \longrightarrow^{*} u$, and a u^{\prime} such that $z \longrightarrow \longrightarrow^{*} u^{\prime}$ and $y^{\prime} \longrightarrow{ }^{*} u^{\prime}$. But y and y^{\prime} are in normal form, so it must be that $y=u=z=u^{\prime}=y^{\prime}$. \square

Reduction Orderings

A binary relation > on terms is said to be a rewrite ordering if it is an ordering (i.e., an irreflexive and transitive relation) and is closed under instantiation and simple congruences, i.e.

- It is never the case that $t>t$.
- If $s>t$ and $t>u$, then $s>u$.
- If $s>t$, then $\theta(s)>\theta(t)$ for any substitution θ.
- If $s>t$, then $f\left(u_{1}, \ldots, u_{i-1}, s, u_{i+1}, \ldots, u_{n}\right)>$
$f\left(u_{1}, \ldots, u_{i-1}, t, u_{i+1}, \ldots, u_{n}\right)$.
A rewrite ordering $>$ whose converse $<$ is well-founded is said to be a reduction ordering.

Properties of the LPO

For every ordering \succ over function symbols:

- $\succ_{l p o}$ is a rewrite ordering
- $\succ_{l p o}$ has the subterm property, i.e., $s \succ_{l p o} t$ for all proper subterms t of s;
- $\prec_{l p o}$ is well-founded whenever \prec is
(making $\succ_{l p o}$ a reduction ordering).
- if $s \succ_{\text {lpo }} t$ then $\operatorname{vars}(t) \subseteq \operatorname{vars}(s)$;

Any rewrite ordering with the subterm property is called a simplification ordering.

Checking for confuence

How do we check for (weak) confluence in general?

Given termination, we can decide weak confluence by discovering whether any starting term s can be rewritten to different normal forms.

Suppose $s \longrightarrow_{R} t_{1}$ and $s \longrightarrow_{R} t_{2}$.
There are three possible situations:

Checking for confuence

Once we have established that a rewrite systems R is terminating (perhaps using an appropriate reduction ordering), we only need to check for weak confluence to conclude that R is confluent and hence canonical.
Example Consider the system G consisting of the group axioms:

- $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- $1 \cdot x=x$
- $i(x) \cdot x=1$

An LPO is enough to show that G is terminating here (Exercise: prove it). Is it confluent?
The term $(i(x) \cdot x) \cdot y$ can be rewritten to different terms that are not joinable. (How?) Thus, G is not confluent.

Critical Pairs

- The two rewrites apply to disjoint subterms. Example:
$(1 \cdot a) \cdot(i(b) \cdot b) \rightarrow a \cdot(i(b) \cdot b)$, with rule $1 \cdot x=x$, and
$(1 \cdot a) \cdot \underline{(i(b) \cdot b)} \rightarrow(1 \cdot a) \cdot 1$, with rule $i(x) \cdot x=1$.
- One rewrite applies to a term that is at or below position corresponding to a variable in the other rewrite. Example: $(b \cdot c) \cdot(1 \cdot a) \rightarrow(b \cdot c) \cdot a$, with $1 \cdot x=x$, and
$(b \cdot c) \cdot \overline{(1 \cdot a)} \rightarrow b \cdot(c \cdot(1 \cdot a))$, with $(x \cdot y) \cdot \underline{z}=x \cdot(y \cdot z)$.
- One rewrite applies to a term that is inside the term the other rewrite applies to, but is not at or below a variable position in the other rewrite rule. Example:
$(i(a) \cdot a) \cdot b \rightarrow 1 \cdot b$, with $i(x) \cdot x=1$, and

$$
\overline{(i(a) \cdot a)} \cdot b \rightarrow i(a) \cdot(a \cdot b) \text { with }(x \cdot y) \cdot z=x \cdot(y \cdot z) \text {. }
$$

The first two cases cannot break weak confluence. (Why?)
Thus, only the third case needs to be considered.

Critical Pairs

Let $t[s]$ denote that s is a (possibly non-proper) subterm of t and let $t\left[s^{\prime}\right]$ denote the term obtained by replacing s with s^{\prime} in t.

Consider $R_{1}=\left\{l_{1}=r_{1}\right\}$ and $R_{2}=\left\{l_{2}=r_{2}\right\}$ with $\operatorname{vars}\left(R_{1}\right) \cap \operatorname{vars}\left(R_{2}\right)=\emptyset$.

If $l_{1}[s]$ with s non-variable, and θ is a (idempotent) most general unifier of s and l_{2}, then

$$
\theta\left(l_{1}\right) \longrightarrow_{R_{1}} \theta\left(r_{1}\right) \text { and } \theta\left(l_{1}\right) \longrightarrow_{R_{2}} \theta\left(l_{1}\left[\theta\left(r_{2}\right)\right]\right)
$$

The pair $\left\langle\theta\left(r_{1}\right), \theta\left(l_{1}\left[\theta\left(r_{2}\right)\right]\right)\right\rangle$ is called a critical pair

Theorem A term rewriting system is weakly confluent iff all its critical pairs are joinable.

Completion

It is straightforward to check whether each critical pair is joinable. However, we can be more ambitious.

Suppose $\langle s, t\rangle$ is a non-joinable critical pair, which means that normal form of s is s^{\prime}, the normal form of t is t^{\prime}, and $s^{\prime} \neq t^{\prime}$.
We can imagine adding $s^{\prime}=t^{\prime}$ or $t^{\prime}=s^{\prime}$ to our rewrite system to achieve confluence.
The process of repeatedly adding normalized critical pairs to the rewrite system is known as completion.

Two things can go wrong:

- It may not be possible to add $s^{\prime}=t^{\prime}$ or $t^{\prime}=s^{\prime}$ while respecting the term ordering.
- The completion process may run forever.

However, often completion is successful.

Critical Pairs

Example What are the critical pairs for the group axioms?

1. $\left(x_{1} \cdot y\right) \cdot z=x_{1} \cdot(y \cdot z)$
2. $1 \cdot x_{2}=x_{2}$
3. $i\left(x_{3}\right) \cdot x_{3}=1$
$\mathbf{1}$ and $\mathbf{2}$ with $\theta=\left\{x_{1} \mapsto 1, y \mapsto x_{2}\right\}$ gives
$\left\langle 1 \cdot\left(x_{2} \cdot z\right), x_{2} \cdot z\right\rangle$.
1 and 3 with $\theta=\left\{x_{1} \mapsto i\left(x_{3}\right), y \mapsto x_{3}\right\}$ gives

$$
\left\langle i\left(x_{3}\right) \cdot\left(x_{3} \cdot z\right), 1 \cdot z\right\rangle .
$$

$\mathbf{1}$ and $\mathbf{1}^{\prime}$ with $\theta=\left\{x_{1} \mapsto x_{1}^{\prime} \cdot y^{\prime}, y \mapsto z^{\prime}\right\}$ gives
$\left\langle\left(x_{1}^{\prime} \cdot y^{\prime}\right) \cdot\left(z^{\prime} \cdot z\right),\left(x_{1}^{\prime} \cdot\left(y^{\prime} \cdot z^{\prime}\right)\right) \cdot z\right\rangle$.
The first and third pairs are joinable, but the second is not.
Thus this rewrite system is not weakly confluent.

Interreduction

Completion often results in a large set of rewrite rules.
A natural question is whether the set can be reduced.
Theorem Let \longrightarrow_{R} be a canonical (i.e. terminating and confluent) abstract reduction relation on a set X. Suppose another abstract reduction relation $\longrightarrow S$ has the following two properties:

- For any $x, y \in X$, if $x \longrightarrow_{S} y$, then $x \longrightarrow_{R}^{+} y$.
- For any $x, y \in X$, if $x \longrightarrow_{R} y$, then there is a $y^{\prime} \in X$ with

$$
x \longrightarrow S y^{\prime} .
$$

Then \longrightarrow_{S} is also canonical and defines the same equivalence.

| Interreduction |
| :--- | :--- |
| Corollary If R is a canonical rewrite system and $(l=r) \in R$, then
 if l is reducible by the other equations, the system $R-\{l=r\}$ is
 also canonical and defines the same equational theory. |
| Corollary If R is a canonical rewrite system and $(l=r) \in R$, let S |
| be the result of replacing the equation $l=r$ in R with $l=r^{\prime}$ |
| where r^{\prime} is the R-normal form of . Then S is also canonical and |
| defines the same equational theory. |

