
22c:295 Seminar in AI — Decision Procedures

Rewriting

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of Iowa

Copyright 2004-05 — Cesare Tinelli and Clark Barrett. a

a These notes were developed from a set of lecture notes originally written by Clark Barrett at New York

University. These notes are copyrighted material and may not be used in other course settings outside of

the University of Iowa in their current form or modified form without the express written permission of the

copyright holders.

Spring 04, 22c:295 Notes: Rewriting – p.1/25

Outline

• Rewriting
• Termination
• Completion

Sources:
Harrison, John. Introduction to Logic and Automated
Theorem Proving. Unpublished manuscript. Used by
permission.

Spring 04, 22c:295 Notes: Rewriting – p.2/25

A Change in Notation

From now on, when we write
Γ |= ϕ,

we will assume that all the free variables of ϕ and of each
formula in Γ are universally quantified.

This is done for convenience, but note that it does change the
meaning of |= for non-closed formulas.

Example
Without implicit quantifiers: p(x) 6|= p(y).
With the implicit quantifiers: p(x) |= p(y).

Spring 04, 22c:295 Notes: Rewriting – p.3/25

Rewriting

Consider the general problem of establishing E |= s = t where E

is a set of equations.

Congruence closure handles the case when all equations are
ground. (How?)

There cannot be a simple procedure for the more general case
because first order logic with equality is, in general, undecidable.

However, often the kind of equational reasoning needed is
straightforward: equations are used in a predictable direction to
simplify expressions.

Using equations in a directional fashion is called rewriting, and
there are indeed cases when this technique gives us a decision
procedure.

Spring 04, 22c:295 Notes: Rewriting – p.4/25

Rewriting

Suppose t is a term and l = r is an equation.

We say that t′ results from rewriting t with l = r iff
there is a subterm s of t and a substitution θ such that

1. s = θ(l),

2. s′ = θ(r) and

3. t′ is the result of replacing an occurrence of s by s′ in t.

We call rewrite rules any (oriented) equations like l = r above.

Given a set R of rewrite rules, we write t −→R t′ iff there is some
rule (l = r) ∈ R which rewrites t to t′.

Spring 04, 22c:295 Notes: Rewriting – p.5/25

Rewriting

Theorem (Soundness or Rewriting) If t −→R t′, then R |= t = t′.

Proof Every rewrite can be duplicated by a single instantiation
followed by a chain of congruences. 2

What about completeness?

It depends on the rewrite rules.

When a set of (oriented) equations R is canonical, the question
of whether R |= s = t for two terms s and t can be answered by
rewriting.

We will make this more precise later.

Spring 04, 22c:295 Notes: Rewriting – p.6/25

Abstract Reduction Relations

An abstract reduction relation is any binary relation on a set X .

We will denote a generic abstract reduction relation by −→.

Every set R of rewrite rules induces an reduction relation on
terms. We will denote that relation by −→R.

We will also denote by
• ←− the inverse of −→ (i.e. x −→ y iff y ←− x).

• −→+ the transitive closure of −→.
• −→∗ the reflexive-transitive closure of −→.
• ←→∗ the reflexive-symmetric-transitive closure of −→.

Spring 04, 22c:295 Notes: Rewriting – p.7/25

Abstract Reduction Relations

Let −→ be an abstract reduction relation on some set X .

An element x ∈ X is said to be in normal form (NF) with respect
to −→ iff there is no y ∈ X such that x −→ y.

The relation −→ is said to be terminating, strongly normalizing
(SN), or noetherian iff there is no infinite reduction sequence:

x0 −→ · · · −→ xn −→ · · ·

Note that −→ is terminating iff←− is well-founded.

Spring 04, 22c:295 Notes: Rewriting – p.8/25

Confluence

Let −→ be an abstract reduction relation on some set X .

• −→ has the diamond property iff whenever x −→ y and
x −→ y′, there is a z such that y −→ z and y′ −→ z.

• −→ is confluent or Church-Rosser (CR) if −→∗ has the
diamond property.

• −→ is canonical if it is confluent and terminating.

• −→ is weakly confluent or weakly Church-Rosser (WCR) if
whenever x −→ y and x −→ y′, there is a z such that
y −→∗ z and y′ −→∗ z.

These notions are closely related: For instance, the diamond
property implies confluence which implies weak confluence.

Spring 04, 22c:295 Notes: Rewriting – p.9/25

Confluence

Weak confluence does not in general imply confluence, but
adding termination changes the story.

Newman’s Lemma If −→ is terminating and weakly confluent, then
it is confluent.

Proof It suffices to show that if x −→∗ y and x −→∗ y′ with y and y′ in
normal form, then y = y′. (Why?) This can be proved by well-founded
induction on←−. Assume x writes to two normal forms: y and y′. The only
interesting case is when x differs from both y and y′. (Why?) In that case,
x −→ w −→∗ y and x −→ w′ −→∗ y′. By weak confluence, there must
be a z such that w −→∗ z and w′ −→∗ z. Since w and w′ are
predecessors of x wrt←−, by well-founded induction there must be a u such
that y −→∗ u and z −→∗ u, and a u′ such that z −→∗ u′ and y′ −→∗ u′.
But y and y′ are in normal form, so it must be that y = u = z = u′ = y′. 2

Spring 04, 22c:295 Notes: Rewriting – p.10/25

Canonical Rewrite Systems

Theorem If R is a set of rewrite rules, then for all terms s and t,
s←→∗

R t iff R |= s = t.

Let s ↓R t denote that s and t are joinable, i.e., there exists a z

such that s −→∗

R u and t −→∗

R y.

Theorem If −→R is confluent, then for any s and t, s←→∗

R t iff
s ↓R t.

Corollary If −→R is terminating and weakly confluent, then it is
canonical. Therefore, R |= s = t can be decided by rewriting s

and t to normal forms and comparing them.
Proof By Newman’s Lemma, termination and weak confluence imply
confluence. Also, termination implies the existence of normal forms. Thus, by
the above theorems, s and t have the same normal forms iff s ↓R t iff
s←→∗

R t iff R |= s = t. 2

Spring 04, 22c:295 Notes: Rewriting – p.11/25

Reduction Orderings

A binary relation > on terms is said to be a rewrite ordering if it
is an ordering (i.e., an irreflexive and transitive relation) and is
closed under instantiation and simple congruences, i.e.

• It is never the case that t > t.
• If s > t and t > u, then s > u.
• If s > t, then θ(s) > θ(t) for any substitution θ.

• If s > t, then f(u1, . . . , ui−1, s, ui+1, . . . , un) >

f(u1, . . . , ui−1, t, ui+1, . . . , un).

A rewrite ordering > whose converse < is well-founded is said
to be a reduction ordering.

Spring 04, 22c:295 Notes: Rewriting – p.12/25

Reduction Orderings

Lemma If > is a reduction ordering and l > r for each equation
l = r in R, then the rewrite relation −→R is terminating.

Proof It is not hard to see that if s −→R t, then s > t. Thus,
because < is well-founded, −→R must be terminating. 2

By this lemma, reduction orderings are very useful for proving
the termination of a rewrite system R.

Spring 04, 22c:295 Notes: Rewriting – p.13/25

Measure-based Orderings

Let us denote by |t| the number of variables and function symbol
occurrences in t.

We might hope to define a reduction ordering s > t by |s| > |t|.
However, this fails the instantiation property:

If s > t, then θ(s) > θ(t) for any substitution θ.

Example Let θ = {y 7→ f(x, x, x)}.

f(x, x, x) > g(x, y) but θ(f(x, x, x)) 6> θ(g(x, y)).

What can we do to fix this?

Let |t|x denote the number of occurrences of x in t.
Define s > t if |s| > |t| and |s|x > |t|x for each variable x in t.

Exercise Prove that the latter > is a reduction ordering.

Spring 04, 22c:295 Notes: Rewriting – p.14/25

In Search of Less Partial Reduction Orderings

The simple reduction ordering we defined earlier is not total. For
instance, it does not order the following pairs of terms:

• (x ∗ y) ∗ z, x ∗ (y ∗ z)

• x ∗ (y + z), x ∗ y + x ∗ z

To order such terms, we need more sophisticated orderings.

Note While it is unreasonable to expect a reduction ordering to
be total on arbitrary terms, reduction orderings that order more
pairs of terms are preferable.

Spring 04, 22c:295 Notes: Rewriting – p.15/25

Lexicographic Path Orderings (simplified version)

A sequence s1, . . . , sm is lexicographically greater than a
sequence t1, . . . , tm with respect to an ordering > on terms if
there is some 1 ≤ n ≤ m such that si = ti for all i < n and
sn > tn.

Let � be an ordering over function symbols. The lexicographic
path ordering �lpo on terms induced by � is defined as follows:

• f(s1, . . . , sm) �lpo f(t1, . . . , tm) if s1, . . . , sm is
lexicographically greater than t1, . . . , tm wrt �lpo;

• f(s1, . . . , sm) �lpo t if si �lpo t for some 1 ≤ i ≤ m;

• f(s1, . . . , sm) �lpo g(t1, . . . , tn) if f � g and
f(s1, . . . , sm) �lpo ti for each 1 ≤ i ≤ m.

Spring 04, 22c:295 Notes: Rewriting – p.16/25

Properties of the LPO

For every ordering � over function symbols:

• �lpo is a rewrite ordering;

• �lpo has the subterm property, i.e., s �lpo t for all proper
subterms t of s;

• ≺lpo is well-founded whenever ≺ is
(making �lpo a reduction ordering).

• if s �lpo t then vars(t) ⊆ vars(s);

Any rewrite ordering with the subterm property is called a
simplification ordering.

Spring 04, 22c:295 Notes: Rewriting – p.17/25

Checking for confluence

Once we have established that a rewrite systems R is
terminating (perhaps using an appropriate reduction ordering),
we only need to check for weak confluence to conclude that R is
confluent and hence canonical.

Example Consider the system G consisting of the group axioms:
• (x · y) · z = x · (y · z)

• 1 · x = x

• i(x) · x = 1

An LPO is enough to show that G is terminating here (Exercise:
prove it). Is it confluent?

The term (i(x) · x) · y can be rewritten to different terms that are
not joinable. (How?) Thus, G is not confluent.

Spring 04, 22c:295 Notes: Rewriting – p.18/25

Checking for confluence

How do we check for (weak) confluence in general?

Given termination, we can decide weak confluence by
discovering whether any starting term s can be rewritten to
different normal forms.

Suppose s −→R t1 and s −→R t2.
There are three possible situations:

Spring 04, 22c:295 Notes: Rewriting – p.19/25

Critical Pairs

• The two rewrites apply to disjoint subterms. Example:
(1 · a) · (i(b) · b)→ a · (i(b) · b), with rule 1 · x = x, and
(1 · a) · (i(b) · b)→ (1 · a) · 1, with rule i(x) · x = 1.

• One rewrite applies to a term that is at or below position
corresponding to a variable in the other rewrite. Example:
(b · c) · (1 · a)→ (b · c) · a, with 1 · x = x, and
(b · c) · (1 · a)→ b · (c · (1 · a)), with (x · y) · z = x · (y · z).

• One rewrite applies to a term that is inside the term the
other rewrite applies to, but is not at or below a variable
position in the other rewrite rule. Example:
(i(a) · a) · b→ 1 · b, with i(x) · x = 1, and
(i(a) · a) · b→ i(a) · (a · b) with (x · y) · z = x · (y · z).

The first two cases cannot break weak confluence. (Why?)
Thus, only the third case needs to be considered.

Spring 04, 22c:295 Notes: Rewriting – p.20/25

Critical Pairs

Let t[s] denote that s is a (possibly non-proper) subterm of t and
let t[s′] denote the term obtained by replacing s with s′ in t.

Consider R1 = {l1 = r1} and R2 = {l2 = r2} with
vars(R1) ∩ vars(R2) = ∅.

If l1[s] with s non-variable, and θ is a (idempotent) most general
unifier of s and l2, then

θ(l1) −→R1
θ(r1) and θ(l1) −→R2

θ(l1[θ(r2)])

The pair 〈θ(r1), θ(l1[θ(r2)])〉 is called a critical pair.

Theorem A term rewriting system is weakly confluent iff all its
critical pairs are joinable.

Spring 04, 22c:295 Notes: Rewriting – p.21/25

Critical Pairs

Example What are the critical pairs for the group axioms?

1. (x1 · y) · z = x1 · (y · z)

2. 1 · x2 = x2

3. i(x3) · x3 = 1

1 and 2 with θ = {x1 7→ 1, y 7→ x2} gives
〈1 · (x2 · z), x2 · z〉.

1 and 3 with θ = {x1 7→ i(x3), y 7→ x3} gives
〈i(x3) · (x3 · z), 1 · z〉.

1 and 1’ with θ = {x1 7→ x′

1 · y
′, y 7→ z′} gives

〈(x′

1 · y
′) · (z′ · z), (x′

1 · (y
′ · z′)) · z〉.

The first and third pairs are joinable, but the second is not.
Thus this rewrite system is not weakly confluent.

Spring 04, 22c:295 Notes: Rewriting – p.22/25

Completion

It is straightforward to check whether each critical pair is
joinable. However, we can be more ambitious.

Suppose 〈s, t〉 is a non-joinable critical pair, which means that
normal form of s is s′, the normal form of t is t′, and s′ 6= t′.

We can imagine adding s′ = t′ or t′ = s′ to our rewrite system to
achieve confluence.

The process of repeatedly adding normalized critical pairs to the
rewrite system is known as completion.

Two things can go wrong:

• It may not be possible to add s′ = t′ or t′ = s′ while
respecting the term ordering.

• The completion process may run forever.

However, often completion is successful.

Spring 04, 22c:295 Notes: Rewriting – p.23/25

Interreduction

Completion often results in a large set of rewrite rules.

A natural question is whether the set can be reduced.

Theorem Let −→R be a canonical (i.e. terminating and confluent)
abstract reduction relation on a set X . Suppose another
abstract reduction relation −→S has the following two properties:

• For any x, y ∈ X , if x −→S y, then x −→+

R y.

• For any x, y ∈ X , if x −→R y, then there is a y′ ∈ X with
x −→S y′.

Then −→S is also canonical and defines the same equivalence.

Spring 04, 22c:295 Notes: Rewriting – p.24/25

Interreduction

Corollary If R is a canonical rewrite system and (l = r) ∈ R, then
if l is reducible by the other equations, the system R− {l = r} is
also canonical and defines the same equational theory.

Corollary If R is a canonical rewrite system and (l = r) ∈ R, let S

be the result of replacing the equation l = r in R with l = r′

where r′ is the R-normal form of r. Then S is also canonical and
defines the same equational theory.

Spring 04, 22c:295 Notes: Rewriting – p.25/25

	Outline
	A Change in Notation
	Rewriting
	Rewriting
	Rewriting
	Abstract Reduction Relations
	Abstract Reduction Relations
	Confluence
	Confluence
	Canonical Rewrite Systems
	Reduction Orderings
	Reduction Orderings
	Measure-based Orderings
	In Search of Less Partial Reduction Orderings
	Lexicographic Path Orderings (simplified version)
	Properties of the LPO
	Checking for confluence
	Checking for confluence
	Critical Pairs
	Critical Pairs
	Critical Pairs
	Completion
	Interreduction
	Interreduction

