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Quantifier Elimination

A theory T of signature Σ admits quantifier elimination iff for
every Σ-formula ϕ(~x) there is a quantifier-free Σ-formula ϕ′(~x)
such that

T |= ϕ(~x) ↔ ϕ′(~x).

Note that if we can

1. compute ϕ′ above and

2. decide the T -satisfiability of qffs,

then we can decide the T -satisfiability of arbitrary formulas.

Notation
ϕ(~x) denotes a formula whose free variables are included in the
vector ~x.
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Quantifier Elimination

The following theorem reduces the quantifier elimination
problem to a particular special case.

Theorem Assume that for every formula ϕ(~y) of the form
∃x (α0 ∧ · · · ∧ αn), where each αi is a literal, there is a
quantifier-free formula ψ(~y) such that T |= (ϕ↔ ψ). Then T
admits quantifier elimination.

Proof By induction on formulas.

(Base) Clearly, every atomic formula is equivalent to a
quantifier-free formula with the same free variables: itself.

(Step) Suppose that α(~y) and β(~y) are formulas with
quantifier-free equivalents α′(~y) and β′(~y).

(over)

Spring 04, 22c:295 Notes: Quantifier Elimination – p.4/26



Quantifier Elimination

Proof (cont.)
The propositional connective cases are trivial: T |= ¬α↔ ¬α′,
T |= (α ∧ β) ↔ (α′ ∧ β′), etc.

For the quantifier cases, we can rewrite ∀x. α as ¬∃x. ¬α, so it
is sufficient to consider ∃x. α(~y).

By induction hypothesis, ∃x. α(~y) is T -equivalent to ∃x. α′(~y),
where α′(~y) is quantifier-free. But now, we can convert α′(~y) to
DNF and distribute the existential quantifier over the disjunction
to get (∃x. γ0(~y)) ∨ · · · ∨ (∃x. γn(~y)), where each γi(~y) is a
conjunction of literals. But then, by assumption, we can find an
equivalent quantifier-free formula for each ∃x. γi(~y), resulting in
an equivalent quantifier-free formula for ∃x. α(~y). 2
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Quantifier Elimination

Example: Dense linear orders without end points
Consider a theory with equality and one predicate symbol <,
axiomatized as follows:

(Totality) ∀x ∀y (x ≈ y ∨ x < y ∨ y < x)

(Transitivity) ∀x ∀y ∀z (x < y ∧ y < z → x < z)

(Irreflexivity) ∀x ¬(x < x)

(Density) ∀x ∀y (x < y → ∃ z. x < z ∧ z < y)

(No Left End Point) ∀x. ∃ y (y < x)

(No Right End Point) ∀x. ∃ y (x < y)

Two obvious models of the theory are the reals and the rational
numbers with the symbol < interpreted in the usual way.
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Quantifier Elimination

Theorem The theory of dense linear orders admits elimination of
quantifiers.

Proof Consider a formula ϕ = ∃x (β0 ∧ · · · ∧ βl), where each βi is
a literal. Note that atomic formulas have only two forms: u ≈ v or
u < v.

First, by the Totality axiom, we can eliminate negative literals
from ϕ as follows . We replace literals of the form ¬(u < v) by
v ≈ u ∨ v < u and literals of the form ¬(u ≈ v) by u < v ∨ v < u.

By converting into DNF and distributing ∃ over ∨, we obtain a
disjunction of formulas ψ of the form ψ = ∃x (α0 ∧ · · · ∧ αp),
where each αi is an atomic formula.

If αi does not contain x, we can move it outside the scope of the
quantifier in ψ.
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Quantifier Elimination

Proof (continued)
If some αi is an equation x ≈ x, we can simply remove it. If it is
an equation x ≈ v (or v ≈ x) with v distinct from x, we can
replace x by v everywhere in the scope of the quantifier and
then eliminate both αi and the quantifier. This is justified by the
logical equivalence: ∃x (x ≈ v ∧ ϕ[x, v]) ↔ ϕ[v, v].

The remaining literals must have the form x < x, u < x or x < v

with u, v distinct from x. If x < x occurs, we can replace the
whole formula by false by the Irreflexivity axiom. Otherwise, we
can rewrite the formula as

∃x (
∧

i

ui < x ∧
∧

j

x < vj).

It is not difficult to show (exercise) that the latter formula is
equivalent in the theory to

∧

i,j ui < vj . 2
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Presburger Arithmetic

Let Z be the integers, let ΣZ be the signature (0, 1,+,−, <), and
let AZ be the standard model of the integers with domain Z .

We define the theory of Presburger arithmetic, TZ , to be the set
Th (AZ) of all ΣZ -sentences true in AZ .

This theory does not admit quantifier elimination. For example,
the formula

ϕ(y) = ∃x. y ≈ x+ x

(expressing that y is even) has no quantifier-free equivalent.

Nevertheless, as we will show, TZ is decidable using an
algorithm based on quantifier elimination for an extension of TZ
to a larger signature.
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Presburger Arithmetic

Notational Conventions
For convenience, we will use

• the predicates t1 ≤ t2, t1 > t2, t1 ≥ t2 to respectively
abbreviate the formulas t1 < t2 + 1, t2 < t1, t2 < t1 + 1.

• each numeral n to abbreviate the sum of n 1’s;
• expressions of the form n · t to abbreviate t+ · · · + t

︸ ︷︷ ︸

n times

.

Note The new symbols above are just syntactic sugar. They do
not really extend the signature ΣZ .
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Quantifier elimination for Presburger Arithmetic

Let’s now instead extend ΣZ to Σ∗
Z

by adding an infinite number
of unary predicate symbols Dk, one for each integer k ≥ 2.

Let T ∗
Z

, be the set all Σ∗
Z

-sentences true in the expansion A∗
Z

of
AZ that interprets Dk(x) as “x is divisible by k”.

The theory T ∗
Z

does admit quantifier elimination.

Note The T ∗
Z

-validity of ground Σ∗
Z

-formulas is easily decidable:
one simply has to evaluate the formula over the integers.

Since quantifier elimination maps every closed Σ∗
Z

-formula to a
T ∗
Z

-equivalent ground Σ∗
Z

-formula, the whole T ∗
Z

is then
decidable.

Since TZ ⊆ T ∗
Z

, it follows that TZ is decidable as well.
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Canonical Forms

Given a total ordering ≺ on variables, each Σ∗
Z

-term can be
effectively translated into the T ∗

Z
-equivalent form:

c1 · x1 + · · · + cn · xn + k

where each ci is a numeral or a negated numeral othen than 0, k
is a numeral or a negated numeral, and x1 ≺ x2 ≺ · · · ≺ xn.

If σ is the function that maps each term to its normal form above,
the following holds:

T ∗
Z |= t1 ≈ t2 iff σ(t1) = σ(t2)

Thus, we call σ a canonizer, and the above form a canonical
form.

Note The function σ is idempotent: σ(σ(t)) = σ(t) for all terms t.
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Cooper’s QE Algorithm

Presburger’s original quantifier elimination algorithm for T ∗
Z

(1930) follows the classic pattern of dealing with an existential
quantifier applied to a conjunction of literals.

In 1972, Cooper developed an improved version based on
eliminating the quantifiers from formulas of the form ∃x ϕ where
ϕ is an arbitrary quantifier-free formula.

Because Cooper’s algorithm avoids the transformation to DNF, it
can be substantially more efficient.

This is the algorithm we will present.

Note In the rest this discussion, when we speak about formula
equivalence or validity we mean equivalence and validity in T ∗

Z
,

which, notice, is the same as equivalence and validity in A∗
Z

.
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Preprocessing Step

For convenience, before eliminating quantifiers from a given
formula, we apply (in order) the following transformations to it.

• All logical connectives other then ¬, ∧ and ∨ are replaced
by their definition in terms of ¬, ∧ and ∨.

• The defined predicates ≤, >,≥ are replaced by their
definitions (e.g., s ≤ t is replaced by s < t+ 1).

• All negated inequalities of the form ¬(s < t) are replaced by
the inequality t < s+ 1.

• All equations and inequations are rewritten to have zero on
the left-hand side (i.e., s ≈ t is replaced by 0 ≈ t− s, and
s < t by 0 < t− s).

• All arguments of predicates are replaced by their canonical
form.
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Presburger Arithmetic

Consider a formula ∃x. ϕ where ϕ is quantifier-free.

After applying the preprocessing transformations and putting the
formula in negated normal form, we can assume that ϕ is
composed of conjunctions and disjunctions of literals of the
form:

0 ≈ t, ¬(0 ≈ t), 0 < t, Dk(t), ¬Dk(t)

where t is a term in canonical form.

Let’s call such a ϕ a restricted formula.
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Presburger Arithmetic

We have ∃x. ϕ where ϕ is a restricted formula.

The next step is to turn ϕ into a formula where all the
occurrences of x have the same coefficient.

We do this by computing the least common multiple (LCM) l of
all of the coefficients of x in ϕ.

• For equations and disequations, 0 ≈ t and ¬(0 ≈ t), we
simply multiply t by the factor which results in x having the
coefficient l.

• Similarly, for divisibility predicates Dk(t), we multiply both t
and k by the factor that results in x having the coefficient l.

• For inequalities 0 < t, we multiply by the absolute value of
the required factor so that the coefficient of x becomes ±l.
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Presburger Arithmetic

We have ∃x. ϕ where ϕ is a restricted formula and the
coefficients of x in ϕ are ±l for some positive integer l.

We replace it with the equivalent formula ∃x. Dl(x) ∧ ψ, where ψ
is obtained from ϕ by replacing every occurence of l · x by x.

Note that ϕ′ = Dl(x) ∧ ϕ is a restricted formula and all
coefficients of x in ϕ′ are ±1.

Observation Given a valuation of the free variables of ϕ′, either

1. ϕ′ holds for arbitrarily small values of x,
i.e., ∀ y. ∃x. x < y ∧ ϕ′ (with y fresh) is valid, or

2. there is a minimal value for x such that ϕ′ holds,
i.e., ∃x. ϕ′ ∧ ∀ y. (y < x→ ¬ϕ′[x 7→ y]) (with y fresh) is valid.

We consider these two cases separately and then take the
disjunction of the result.
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Presburger Arithmetic

Before considering the two separate cases, we need some
preliminary results.

For an atomic formula α appearing in ϕ′, we define α−∞ as
follows:

α α−∞

0 ≈ t with 1 · x in t false

0 < t with 1 · x in t false

0 < t with −1 · x in t true

other atomic formula α α

Now, we define ϕ′
−∞ to be the result of replacing each atomic

formula α in ϕ′ with α−∞.
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Presburger Arithmetic

Lemma For sufficiently small values of x, ϕ′[x] and ϕ′
−∞[x] are

equivalent.

Proof By induction on the structure of ϕ′. Exercise 2

Lemma ∀ y. ∃x. x < y ∧ ϕ′[x] is equivalent to ∃x. ϕ′
−∞[x].

Proof (⇒) Assume that ∀ y. ∃x. x < y ∧ ϕ′[x] holds. Then ϕ′[x]
holds for arbitrarily small values of x. In particular, ϕ′[x] holds for
a sufficiently small value of x that makes ϕ′[x] and ϕ′

−∞[x]

equivalent by the previous lemma. If follows that ∃x. ϕ′
−∞[x]

holds.
(over)
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Presburger Arithmetic

Proof (cont.) (⇐) Suppose ∃x. ϕ′
−∞[x] holds, which means that

ϕ′
−∞[x] holds for some value i of x.

We first show that ϕ′
−∞[x] holds for infinitely many values of x

smaller than i.
To do that, observe that the truth of predicates of the form Dk(t)
in which x occurs positively (i.e., with coefficient 1) is unchanged
if we subract from the value of x a multiple of k. Let m be the
LCM of all k’s such that Dk(t) is an atomic formula in ϕ′

−∞.
Then, since these are the only atomic formulas involving x in
ϕ′
−∞, the truth of ϕ′

−∞ is unchanged if we subtract from the
value of x a multiple of m.
Given that ϕ′

−∞[x] holds for some value i of x, it follows that it
also holds for the value i− n ·m of x for all n ≥ 0.

It follows from the previous lemma (How?) that
∀ y. ∃x. x < y ∧ ϕ′[x] also holds. 2
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Presburger Arithmetic

So far, we have that ∀ y. ∃x. x < y ∧ ϕ′[x] and ∃x. ϕ′
−∞[x] are

equivalent.

Corollary Let m be the LCM of all k such that Dk(t) is a
subformula of ϕ′

−∞ containing x. Then ∀ y. ∃x. x < y ∧ ϕ′[x] is
equivalent to

∨m
i=1

ϕ′
−∞[x 7→ i].

Proof We know ∀ y. ∃x. x < y ∧ ϕ′[x] is equivalent to ∃x. ϕ′
−∞[x].

Now, since ϕ′
−∞[x] is invariant modulo m, there is an x such that

ϕ′
−∞[x] holds iff at least one of the formulas ϕ′

−∞[x 7→ i] holds
where i ranges over any set of m consecutive integers. In
particular, we can choose i ∈ [1..m]. 2

In conclusion, we have that if ∀ y. ∃x. x < y ∧ϕ′[x] holds, our first
case, then we can equivalently replace it by

∨m
i=1

ϕ′
−∞[i].
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Presburger Arithmetic

Now consider the formula

∃x. ϕ′[x] ∧ ∀ y. y < x→ ¬ϕ′[x 7→ y] (∗)

where ϕ′ is a restricted formula and all the coefficients of x in ϕ′

are ±1, our second case, and assume it holds for some
valuation of its free variables.

As before, let m be the LCM of all k such that Dk(t) is a
subformula of ϕ′ containing x.

Given that (∗) holds, there is some minimal integer i such that
ϕ′[x 7→ i] holds, but ϕ′[x 7→ i−m] does not.

Since the divisibility predicates are invariant under m, the
change in the value of ϕ′ when evaluated at i−m must then be
caused by one of the other literals of ϕ′.
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Presburger Arithmetic

For each literal L[x] of ϕ′ that contains x and is not a divisibility
predicate, we associate a boundary point b:

an integer such that L[x 7→ b] does not hold but L[x 7→ b+ 1]
does.

literal type boundary point

0 ≈ x+ t the value of −(t+ 1)

¬(0 ≈ x+ t) the value of −t
0 < x+ t the value of −t
0 < −x+ t none

We call the collection of such boundary points the B-set for ϕ′.
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Presburger Arithmetic

Theorem Let m be the LCM of all k such that Dk(t) is a
subformula of ϕ′ containing x, and let B be the B-set of ϕ′.
For all integers i, if ϕ′[x 7→ i] holds but ϕ′[x 7→ i−m] does not,
then i = b+ j, where b ∈ B and j ∈ [1..m].

Proof By structural induction on ϕ′. Let i be such that ϕ′[x 7→ i]
holds but ϕ′[x 7→ i−m] does not.

Base case
Suppose ϕ′ is (of the form) 0 ≈ x+ t. Then i must be equal
to the value of −t. Since a boundary point for ϕ′ is equal to
the value of −(t+ 1), it follows that there is a b ∈ B such
that i = b+ 1.

Suppose ϕ′ is ¬(0 ≈ x+ t). A boundary point b for ϕ′ equals
the value of −t. Note that ϕ′[x 7→ i−m] can only be false
when i = b+m.

(over)
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Presburger Arithmetic

Base case (continued)
Suppose ϕ′ is 0 < x+ t. Then a boundary point b for ϕ′

equals the value of −t. By assumption we have that both
−t+ 1 ≤ i and i ≤ −t+m hold. It follows that i = b+ j for
some j ∈ [1..m].

This concludes the base case, because if ϕ′ is a literal of
other forms, it is not possible that ϕ′[x 7→ i] holds while
ϕ′[x 7→ i−m] does not.

Inductive Step
Exercise

2
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Presburger Arithmetic

We can now state the main quantifier elimination result,
obtained by combining the results of the two cases.

Theorem Suppose ϕ′ is a restricted formula and all coefficients of
x in ϕ′ are ±1. Let m be the LCM of all k such that Dk(t) is a
subformula of ϕ′ containing x, and that B is the B-set of ϕ′.
Then,

(∃x. ϕ′[x]) ↔

m∨

j=1

(

ϕ′
−∞[j] ∨

∨

b∈B

(ϕ′[x 7→ b+ j])

)

.

Proof By the previous results. (How?) 2
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