
22c:295 Seminar in AI — Decision Procedures

Equality

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of Iowa

Copyright 2004-05 — Cesare Tinelli and Clark Barrett. a

a These notes were developed from a set of lecture notes originally written by Clark Barrett at New York

University. These notes are copyrighted material and may not be used in other course settings outside of

the University of Iowa in their current form or modified form without the express written permission of the

copyright holders.

Spring 04, 22c:295 Notes: Equality – p.1/26

Outline

• First Order Logic with and without Equality
• Review of Homomorphisms
• Equality
• Congruence Closure

Sources:
Harrison, John. Introduction to Logic and Automated
Theorem Proving. Unpublished manuscript. Used by
permission.
G. Nelson and D. Oppen. Fast Decision Procedures
Based on Congruence Closure. JACM 27(2), 1980, pp.
356-364.
P. Downey, R. Sethi, and R. Tarjan. Variations on the
Common Subexpression Problem. JACM 27(4), 1980,
pp. 758-771.

Spring 04, 22c:295 Notes: Equality – p.2/26

FOL with/without equality

So far we have considered First Order Logic with equality.

In this logic, the equality symbol (=) is a logical constant and
every model of the logic interprets it as the identity relation.

First Order Logic without equality is a weaker version of FOL
that has no distinguished equality symbol.

This logic, admits models that interpret the equality symbol as a
relation other than the identity relation.

From now on, we will consider FOL without equality.

Spring 04, 22c:295 Notes: Equality – p.3/26

Homomorphisms/Embeddings

Suppose that A and B are models over the same signature Σ.
A strong homomorphism (aka, embedding) h of A into B is a
function h : dom(A) → dom(B) such that

1. For each n-ary predicate symbol P ∈ Σ and each n-tuple
〈a1, . . . , an〉 of elements of dom(A),

〈a1, . . . , an〉 ∈ PA iff 〈h(a1), . . . , h(an)〉 ∈ PB.

2. For each n-ary function symbol f ∈ Σ and each n-tuple
〈a1, . . . , an〉 of elements of dom(A),

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

3. For each constant symbol c ∈ Σ, h(cA) = cB.

Spring 04, 22c:295 Notes: Equality – p.4/26

Embedding Theorem

Let h be an embedding from A to B, and let s map the set of
variables into dom(A).

1. For any term t, h(s(t)) = h ◦ s(t), where s is computed in A,
and h ◦ s(t) is computed in B.

2. For any quantifier-free formula α

A |=s α iff B |=h◦s α.

3. If h is surjective (onto), then the above holds even if α

contains quantifiers.

Spring 04, 22c:295 Notes: Equality – p.5/26

Capturing equality in FOL without equality

We say that a model M is normal if the equality symbol = is
interpreted as the identity relation on the domain of M .

Can we restrict ourselves to just normal models?

More precisely, recall that a class K of Σ-models is elementary
(ECΣ), iff K = ModT for some set T of first order Σ-sentences.

Question: Is the class of normal (Σ-)models elementary?

Spring 04, 22c:295 Notes: Equality – p.6/26

Capturing Equality in FOL without equality

Theorem The class of normal models is not elementary.

Proof Sketch
Suppose M is a normal model. Let a be an element of the
domain of M . Consider adding an element b to the domain of M

and defining a function h : dom(M) ∪ {b} → dom(M) which is the
identity function except at b which it maps to a. It is not hard to
see that we can construct an extension M ′ of M with domain
dom(M) ∪ {b} in such a way that h is a surjective embedding of
M ′ onto M .

By the Embedding Theorem, for any sentence ϕ, M |= ϕ iff
M ′ |= ϕ. Thus, for any set of sentences T , M ∈ ModT iff
M ′ ∈ ModT . But M is a normal model and M ′ is not. 2

Spring 04, 22c:295 Notes: Equality – p.7/26

Capturing Equality in FOL without equality

So it is impossible to exactly define the class of normal models
using first order axioms.

However, all hope is not lost.

We can specify a set of axioms using which the questions of
validity and satisfiability can be answered with the existing
apparatus.

Spring 04, 22c:295 Notes: Equality – p.8/26

Equality Axioms

Let ∆ be a set of formulas and let eqaxioms (∆) be defined as the
following set of sentences:

1. ∀x. x = x

2. ∀x y. x = y ↔ y = x

3. ∀x y z. x = y ∧ y = z → x = z

4. ∀x1 · · · xn y1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn →
f(x1, . . . , xn) = f(y1, . . . , yn),

for each function symbol f occurring in ∆

5. ∀x1 · · · xn y1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn →
R(x1, . . . , xn) → R(y1, . . . , yn),

for each predicate symbol R occurring in ∆

Spring 04, 22c:295 Notes: Equality – p.9/26

Equality Axioms

Theorem Any set ∆ of first order formulas has a normal model iff
the set ∆ ∪ eqaxioms (∆) has a model.

Proof Sketch
The only if direction is easy since clearly any normal model
satisfies the equality axioms.

In the other direction, suppose M is a model of ∆ ∪ eqaxioms (∆).
Let ∼ be the relation on dom(M) which interprets the equality
symbol in M . Because M satisfies the equality axioms, ∼ is an
equivalence relation. Now let h be a function which maps each
element of M to its equivalence class. It is not hard to see that
we can construct a normal model M ′ whose domain is the
equivalence classes of ∼ in such a way that h is a surjective
embedding of M onto M ′. It follows by the Embedding Theorem
that M ′ is a model of ∆. 2

Spring 04, 22c:295 Notes: Equality – p.10/26

Equality Axioms

Corollary Any formula ϕ is satisfiable in a normal model iff
ϕ ∧ eqaxioms (ϕ) is satisfiable.

Corollary A formula ϕ is valid in normal models iff
eqaxioms (ϕ) → ϕ is valid.

Thus by generating the appropriate equality axioms, we can
reduce the question of satisfiability or validity over normal
models to the question of general satisfiability or validity.

Spring 04, 22c:295 Notes: Equality – p.11/26

Satisfiability and Validity Modulo the Theory of Equality

By the above results, the problem of checking
satisfiability/validity in normal models can be reduced to a
satisfiability/validity modulo theories problem.

Let Σ be a finite signature and let TE be the set of equality
axioms over the symbols in Σ.

Corollary Any Σ-formula ϕ is satisfiable in a normal model iff ϕ is
TE -satisfiable.

Corollary A Σ-formula ϕ is valid in normal models iff ϕ is TE -valid.

Spring 04, 22c:295 Notes: Equality – p.12/26

Satisfiability and Validity Modulo the Theory of Equality

Theorem The TE -satisfiability of quantifier-free formulas is
decidable.

We will study decision procedures for this problem in the
following.

Observation: For any theory T , a quantifier-free formula ϕ with
free variables x1, . . . , xn is T -unsatisfiable iff ∀x1 · · · ∀xn ¬ϕ is
T -valid.
Therefore, the T -unsatisfiability of quantifier-free formulas and
the T -validity of universal formulas are equivalent problems for
any theory T .

Spring 04, 22c:295 Notes: Equality – p.13/26

Congruence Closure

Let G = (V, E) be a directed graph such that for each vertex v in
G, the successors of v are ordered.
Let C be any equivalence relation on V .

The congruence closure C∗ of C is the finest equivalence
relation on V that

1. contains C and

2. satisfies the following property for all vertices v and w with
respective successors v1, . . . , vk and w1, . . . , wl:

If k = l and (vi, wi) ∈ C∗ for1 ≤ i ≤ k,
then (v, w) ∈ C∗.

Spring 04, 22c:295 Notes: Equality – p.14/26

Congruence Closure

The essence of congruence closure:

If the corresponding successors of the nodes v and w

are equivalent under C∗,
then v and w are themselves equivalent under C∗.

Often, the vertices are labeled by some labeling function λ. In
this case, the property becomes:

If λ(v) = λ(w), k = l, and (vi, wi) ∈ C∗ for 1 ≤ i ≤ k,
then (v, w) ∈ C∗.

Spring 04, 22c:295 Notes: Equality – p.15/26

A Simple Algorithm for Congruence Closure

Let C0 = C and i = 0.

1. Number the equivalence classes in Ci consecutively from 1.

2. Let α assign to each vertex v the number α(v) of the
equivalence class containing v.

3. For each vertex v construct a signature
s(v) = λ(v)(α(v1), . . . , α(vk)), where v1, . . . , vk are the
successors of v.

4. Let Ci+1 be the finest equivalence relation on V such that
two vertices equivalent under Ci or having the same
signature are equivalent under Ci+1.

5. If Ci+1 = Ci, let C∗ = Ci; otherwise increment i and repeat.

Spring 04, 22c:295 Notes: Equality – p.16/26

Congruence Closure and TE

Let Σ be a signature with no predicate symbols and let TE be the
theory of equality over Σ.

If Γ is a set of Σ-equalities and ∆ is a set of Σ-disequalities, then
the TE -satisfiability of Γ ∪ ∆ can be determined as follows.

• Let G be a graph corresponding to the abstract syntax trees
of terms in Γ ∪ ∆.

• Let vt denote the vertex of G associated with the term t.
• Let C be the equivalence relation on the vertices of G

induced by Γ.
• Γ ∪ ∆ is TE -satisfiable iff for each s 6= t ∈ ∆, (vs, vt) 6∈ C∗.

Spring 04, 22c:295 Notes: Equality – p.17/26

An Algorithm for TE -satisfiability

Input:
Γ, a (finite) set of Σ-equalities
∆, a (finite) set of Σ-disequalities

CC(Γ, ∆)
Construct G(V, E) from terms in Γ and ∆;
while Γ 6= ∅

Remove some equality a = b from Γ;
Merge(a, b);

if find(a) = find(b) for some a 6= b ∈ ∆ then
return false

else
return true

Spring 04, 22c:295 Notes: Equality – p.18/26

An Algorithm for TE -satisfiability

Input: a, b, two vertices of G(V, E)

Merge(a, b)
if find(a) = find(b) then return;
Let A be the set of all predecessors of
all vertices c s.t. find(c) = find(a);
Let B be the set of all predecessors of
all vertices c s.t. find(c) = find(b);
union(a, b);
foreach x ∈ A and y ∈ B

if signature(x) = signature(y) then
Merge(x, y)

Spring 04, 22c:295 Notes: Equality – p.19/26

Union/Find

Recall:
union and find are abstract operations for manipulating
equivalence classes.

union(x, y) merges the equivalence classes of x and y.

find(x) returns a unique representative of the current
equivalence class of x.

Spring 04, 22c:295 Notes: Equality – p.20/26

Correctness of CC

Proposition The CC procedure terminates on all inputs.

Proof Exercise.

Proposition Let Γ be a finite set of Σ-equalities and let ∆ be a
finite set of Σ-disequalities.
The set Γ ∪ ∆ is TE -satisfiable iff CC(Γ, ∆) = true .

Proof Non-trivial. See references on page 2.

Spring 04, 22c:295 Notes: Equality – p.21/26

Decidability results

Theorem The TE -satisfiability of quantifier-free formulas with no
predicate symbols is decidable.

Proof
By the usual DNF translation, every quantifier-free formula with
no predicate symbols can be effectively converted into an
equisatisfiable disjunction of sets of equalities and disequalities.
Then the two results above apply. 2

Corollary The TE -satisfiability of quantifier-free formulas is
decidable.

Proof
Treat the predicate symbols of the given formula as function
symbols by replacing each atom p(t1, . . . , tn) with the equality
p(t1, . . . , tn) = T, where T is a fresh constant symbol. Then the
previous theorem applies. 2

Spring 04, 22c:295 Notes: Equality – p.22/26

Complexity of Congruence Closure

The previous CC algorithm has time complexity O(n2) where n

is the number of vertices in the initial graph.

DST Algorithm The Downey-Sethi-Tarjan Congruence Closure
algorithm is more efficient, with complexity O(n log n).

The lower complexity is achieved thanks to additional data
structures and methods.

Spring 04, 22c:295 Notes: Equality – p.23/26

DST Algorithm

Additional Helper Functions

• union(a, b) in this algorithm, the first argument always
becomes the new equivalence class representative.

• list(e) returns the list of vertices with at least one successor
in equivalence class e.

• enter (v) stores (v, signature(v)) in a signature table.

• delete(v) removes (v, signature(v)) from the signature table
if it is there. Note that this operation does not remove any
other entry, even if it has the same signature as v.

• query(v) if there is an entry (w, signature(w)) in the
signature table with w 6= v and signature(w) = signature(v),
then return w; otherwise, return ⊥.

Spring 04, 22c:295 Notes: Equality – p.24/26

DST Algorithm

Γ, a (finite) set of Σ-equalities
∆, a (finite) set of Σ-disequalities

CC(Γ, ∆)
Construct G(V, E) from terms in Γ and ∆;
C := {(a, b) | a = b ∈ Γ};
Merge(C);
if find(a) = find(b) for some a 6= b ∈ ∆ then

return false

else
return true

Spring 04, 22c:295 Notes: Equality – p.25/26

DST Algorithm

Merge(C)
pending := set of all vertices;
while pending 6= ∅

foreach v ∈ pending

if query(v) = ⊥ then enter(v)
else add (v,query(v)) to C;

pending := ∅;
foreach (a, b) ∈ C

if find(a) 6= find(b) then
if |list(find(a))| < |list(find(b))| then
swap a and b;

foreach u ∈ list(find(b))
delete(u); add u to pending;

union(find(a),find(b));
C := ∅

Spring 04, 22c:295 Notes: Equality – p.26/26

	Outline
	FOL with/without equality
	Homomorphisms/Embeddings
	Embedding Theorem
	Capturing equality in FOL without equality
	Capturing Equality in FOL without equality
	Capturing Equality in FOL without equality
	Equality Axioms
	Equality Axioms
	Equality Axioms
	Satisfiability and Validity Modulo the Theory of Equality
	Satisfiability and Validity Modulo the Theory of Equality
	Congruence Closure
	Congruence Closure
	A Simple Algorithm for Congruence Closure
	Congruence Closure and mth {T_mathcal {E}}
	An Algorithm for mth {T_mathcal {E}}-satisfiability
	An Algorithm for mth {T_mathcal {E}}-satisfiability
	Union/Find
	Correctness of mth {CC}
	Decidability results
	Complexity of Congruence Closure
	DST Algorithm
	DST Algorithm
	DST Algorithm

