Proof-producing Congruence Closure

Robert Nieuwenhuis and Albert Oliveras

Tech. Univ. Catalonia, Barcelona

The University of Iowa March 2005

1

Overview of this talk

- 1. SMT: Satisfiability Modulo Theories
- 2. Lazy Approach to SMT Need for Explain
- 3. DPLL(T) Approach to SMT Need for Explain
- 4. Solvers: Union-Find and Congruence Closure
- 5. Union-Find with Explain
- 6. Congruence Closure with Explain
- 7. Conclusions and Open Problem

SMT: Satisfiability Modulo Theories

Example where the theory T is = (congruence):

$$g(a) = c \land c \neq d \land (f(g(a)) \neq f(c) \lor g(a) = d)$$

 Theories of interest: EUF [Burch and Dill '94], CLU [Bryant, Lahiri and Seshia '02], separation logic [BLS '03], arrays, lists, queues,

. . .

 Applications: software/hardware verification, circuit design, compiler optimization, planning, scheduling, ...

Lazy approach to SMT:

-Consider formula as propositional, i.e., "forget" theory T. -REPEAT

SAT solver looks for a propositional model, while incremental T-solver for conjunctions of literals checks T-consistency of (partial) model being built. If T-inconsistent, a lemma is added precluding the model. UNTIL T-model found OR propositionally unsat.

Constraints imposed by the theory are introduced on demand.

Lazy/eager notification, online/offline SAT solver, extraction of inconsistency proofs [Barret, Dill and Levitt '96; deMoura and Ruess '02; Barret, Dill and Stump '02; Flanagan et al '03, etc]

EXAMPLE of Lazy approach: *T* is = (congruence)

Model being built by SAT solver and being fed into T-solver: $\dots b=c, \dots f(b)=c \dots f(c)=a \dots$ Upon additional input $a \neq b$: incompatible with T! Solver must generate lemma:

 $b = c \land f(b) = c \land f(c) = a \longrightarrow a = b$

because the first three atoms are the explanation of a=b.

Crucial to efficiently find small explanations among the (many) input equations!

Another SMT approach needing explanations:

 $DPLL(T) = General DPLL(X) engine + Solver_T for given T$ [GHNOT, CAV'04]

- Idea similar to CLP(X) framework for Constraint LP
- Improves upon Lazy Approach because DPLL gets pruned as well by T-consequences L (communicated by Solver_T) from T-consistent partial models (not only from T-inconsistent ones as in lazy approach).
- Also outperforms ad-hoc eager translation methods of Bryant et al on their own processor verification benchmarks.

For backjumping, DPLL(T) builds Conflict Graphs, where the predecessors of T-consequence nodes L must be the literals in the explanation of L.

Implementing the solver for EUF: Union-Find and Congruence Closure

Union-find (U-F) data structures maintain equivalence relation induced by sequence of input unions $a_1=b_1, a_2=b_2, \ldots$ Tarjan: sequence of *n* unions and finds in $O(n \alpha(n))$ time

Congruence Closure (CC) algorithms maintain a *congruence* relation given by sequence of pairs of equations between ground terms: $s_1 = t_1, s_2 = t_2, \ldots$

Difference w.r.t. equivalence rel.: also monotonicity axioms:

 $f(x_1 \dots x_n) = f(y_1 \dots y_n)$ if $x_1 = y_1 \dots x_n = y_n$ Here wlog. consider only flat eqs: f(a,b) = c or a = b [NO03] Sequence of n merges in $O(n \log n)$ time [e.g., DST80]

The Explain operation

INPUT: *E* and s = t (ground equations) such that $E \models s = t$ **OUTPUT:** A small subset $E' \subseteq E$

But, what do we understand by small ?

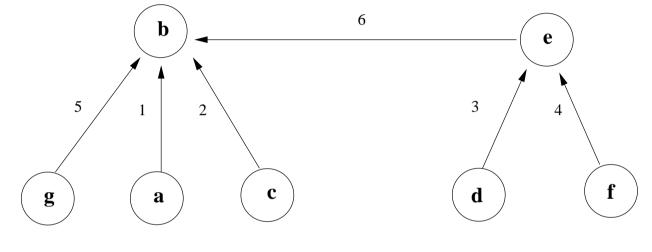
- E' is minimal if for any E'' s.t. $E'' \models s = t$ then $|E'| \le |E''|$.
- E' is irredundant if for any $E'' \subsetneq E'$ we have $E'' \nvDash s = t$.

It is clear that minimality implies irredundancy, but it may be too difficult to find minimal explanations.

Union-Find with Explain

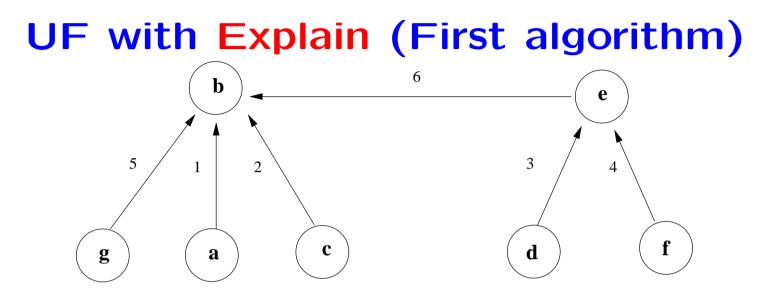
- An irredundant explanation for a = b will be of the form $a = a_1, a_1 = a_2, a_2 = a_3, \dots a_n = b.$
- How many different irredundant explanations can we have?
- By ignoring redundant equalities, we can assume there exists only one irredundant explanation each equation.
- Therefore, in our case, irredundancy coincides with minimality.

UF with Explain (First attempt)



1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

- Take Explain(d=f) to be the equations in the paths from d and f to their nearest common ancestor, that is d=e, f=e.
 OK!
- But Explain(g=c) gives g=c, c=a. Redudant!
- Even worse, Explain(a=f) gives a=b, d=e, c=f. Not a proof!

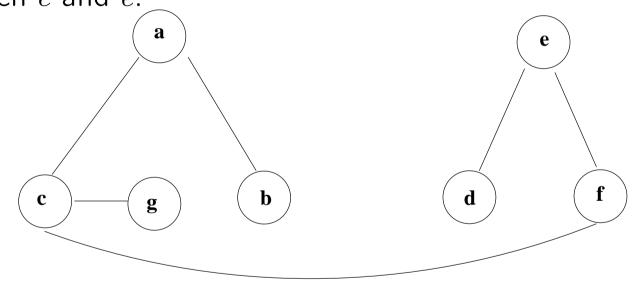


1. $a \rightarrow b$ 2. $c \rightarrow a$ 3. $d \rightarrow e$ 4. $f \rightarrow e$ 5. $g \rightarrow c$ 6. $c \leftarrow f$

- For Explain(a=f) only the newest of the eqns in the paths from a to f to their NCA can be ensured to be in the proof.
- Hence, c = f is part of the explanation. Now, recursive call to Explain(a=c).
- Orientation of the equalities allows one to discover the recursive calls. Try Explain(g=d)!!!.
- Complexity $O(k \lg n)$ for a proof of size k.

UF with **Explain** (Second algorithm)

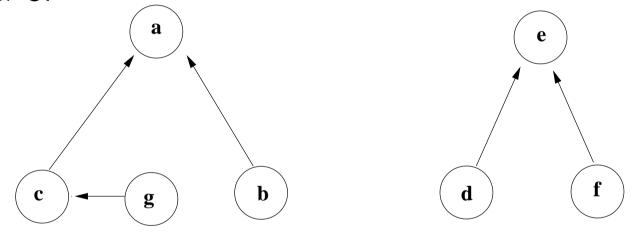
 If we consider G the graph whose edges are the unions, looking for Explain(c=e) amounts to looking for the path between c and e.



1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f
How to find the path efficiently? We will use directed edges and rooted trees.

UF with Explain (Second alg. cntd.)

 Suppose we have the following trees after adding edge number 5.

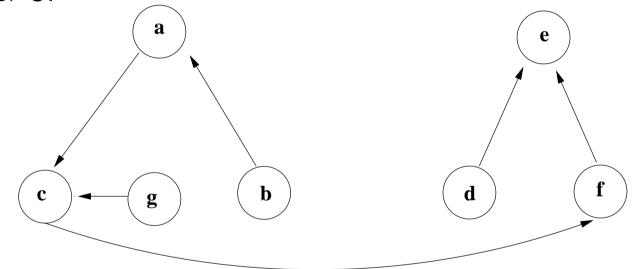


1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

- Any orientation of c=f breaks the desired structure.
- **SOLUTION:** orient $c \rightarrow f$ and reverse all edges between c and its root.

UF with Explain (Second alg. cntd.)

 Suppose we have the following trees after adding edge number 5.



1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

- Any orientation of c=f breaks the desired structure.
- Complexity: O(k) for a proof of size k but now UF becomes
 O(n | g n) (if smart orientation is chosen).

Congruence Closure with Explain (1)

Try to give a modular view here: separate CC from Expl

Each new equality between constants *a* and *b* can come from:

- A single input merge a=b, or
- Two input merges $f(a_1, a_2) = a$ and $f(b_1, b_2) = b$

First idea: keep proof forest as in Alg.2 for U-F, where edges are labelled with the corresponding input merges.

Example: 1. $f(a_1)=a$ 2. $f(b_1)=b$ 3. c=b 4. $a_1=b_1$ After 4., the proof forest is: $a_1 \xrightarrow{4} b_1$ $a \xrightarrow{1,2} b \xleftarrow{3} c$ Expl(a=c) finds 1,2,3 and, recursively, 4.

Cost: $O(k \alpha(k))$, where CC still $O(n \log n)$. The α comes from tricks to avoid exploring twice same edges.

Congruence Closure with Explain (2)

Problematic example for first idea:

1. $f(a_1)=a$ 2. $f(b_1)=b$ 3. $f(c_1)=c$ 4. $a_1=b_1$ 5. $a_1=c_1$

After 4., the proof forest is: $a_1 \xrightarrow{4} b_1 \qquad a \xrightarrow{1,2} b$

After 5., the proof forest is: $c_1 \xrightarrow{5} a_1 \xleftarrow{4} b_1 \qquad a \xrightarrow{1,2} b \xleftarrow{2,3} c$

Expl(a=c) finds 1,2,3 and, recursively, 4,5.

But its subset 1,3,5 is already a proof!

Congruence Closure with Explain (3)

Second idea: Maintain proof forest where:

- edges are for input merges between cts. only
- nodes are classes of cts equal by direct monotonicity

Wlog. assume c occurs at most once as rhs of f(a, b) = c eqs.

Previous example ok now:

1. $f(a_1)=a$ 2. $f(b_1)=b$ 3. $f(c_1)=c$ 4. $a_1=b_1$ 5. $a_1=c_1$ After 4., the proof forest is: $a_1 \xrightarrow{4} b_1$ [a,b]

After 5., the proof forest is: $c_1 \xrightarrow{5} a_1 \xleftarrow{4} b_1$ [a, b, c]

Expl(a=c) finds eqs 1,3 (the only ones of which a and c are rhs) and, recursively, 5.

Congruence Closure with Explain (4)

Another example:

1. $f(a_1)=a$ 2. $f(b_1)=b$ 3. $f(c_1)=c$ 4. $f(d_1)=d$ 5. $a_1=b_1$ 6. $c_1=d_1$ 7. a=e 8. d=eAfter 6.: $a_1 \xrightarrow{5} b_1$ $c_1 \xrightarrow{6} d_1$ [a,b] [c,d]After 7.: $a_1 \xrightarrow{5} b_1$ $c_1 \xrightarrow{6} d_1$ $[a,b] \xrightarrow{7} e$ [c,d]After 8.: $a_1 \xrightarrow{5} b_1$ $c_1 \xrightarrow{6} d_1$ $[a,b] \xrightarrow{7} e \xleftarrow{8} [c,d]$

Expl(b=c) finds eqs 7,8 (for going to common ancestor e). For using 7., Expl(a=b) is required: 1,2, and, recursively, 5. For using 8., Expl(c=d) is required: 3,4, and, recursively, 6.

Congruence Closure with Explain (5)

Maintaining class nodes while keeping CC $O(n \log n)$ can be done if class merge causes tree merge.

But...[this is our current problem] Same example continued:

1. $f(a_1)=a$ 2. $f(b_1)=b$ 3. $f(c_1)=c$ 4. $f(d_1)=d$

5.
$$a_1=b_1$$
 6. $c_1=d_1$ 7. $a=e$ 8. $d=e$ 9. $b_1=c_1$

After 8.: $a_1 \xrightarrow{5} b_1$ $c_1 \xrightarrow{6} d_1$ $[a, b] \xrightarrow{7} e \xleftarrow{8} [c, d]$ Should 9. $b_1 = c_1$ have any effect on the rightmost tree? **Yes:**

Assume 9 belongs to our explanation, and recursively we call Expl(b=c). Then $\{3, 4, \ldots, 9\}$ suffices, instead of $\{1, 2, 3, 4, 5, 6, 7, 8, \ldots, 9\}$.

Thm: minimal proofs if \square two congruent non-singleton classes.

Cong. Cl. w/ Explain (Conclusions)

Interesting open problem:

- Keep CC $O(n \log n)$ and
- Find k-step proofs depending only on k (Ours: $O(k \alpha(k))$)
- Proofs minimal (w.r.t. \subseteq). This is where we sometimes fail.

In practice (on large set of industrial benchmarks of Bryant et al for EUF and EUF w/ integer offsets):

- Algorithm given here finds almost always (99% of the cases?) minimal explanations
- Most explanations are small: 4 or 5 steps, sometimes 10.

Many details omitted: Incrementality, Backtracking, Theory Extensions,...

Stay tuned at www.lsi.upc.es/~oliveras