
Proof-producing
Congruence Closure

Robert Nieuwenhuis and Albert Oliveras

Tech. Univ. Catalonia, Barcelona

The University of Iowa

March 2005

1

Overview of this talk

1. SMT: Satisfiability Modulo Theories

2. Lazy Approach to SMT

Need for Explain

3. DPLL(T) Approach to SMT

Need for Explain

4. Solvers: Union-Find and Congruence Closure

5. Union-Find with Explain

6. Congruence Closure with Explain

7. Conclusions and Open Problem

2

SMT: Satisfiability Modulo Theories

Example where the theory T is = (congruence):

g(a)=c ∧ c 6=d ∧ (f(g(a)) 6=f(c) ∨ g(a)=d)

Theories of interest:

EUF [Burch and Dill ’94],

CLU [Bryant, Lahiri and Seshia ’02],

separation logic [BLS ’03],

arrays, lists, queues,

...

Applications: software/hardware verification, circuit design,

compiler optimization, planning, scheduling, ...

3

Lazy approach to SMT:

–Consider formula as propositional, i.e., “forget” theory T.

–REPEAT

SAT solver looks for a propositional model, while

incremental T-solver for conjunctions of literals checks

T-consistency of (partial) model being built.

If T-inconsistent, a lemma is added precluding the model.

UNTIL T-model found OR propositionally unsat.

Constraints imposed by the theory are introduced on demand.

Lazy/eager notification, online/offline SAT solver, extraction of

inconsistency proofs [Barret, Dill and Levitt ’96; deMoura and

Ruess ’02; Barret, Dill and Stump ’02; Flanagan et al ’03, etc]

4

EXAMPLE of Lazy approach: T is = (congruence)

Model being built by SAT solver and being fed into T-solver:

. . . b=c, f(b)=c f(c)=a . . .

Upon additional input a 6=b: incompatible with T !

Solver must generate lemma:

b=c ∧ f(b)=c ∧ f(c)=a −→ a=b

because the first three atoms are the explanation of a=b.

Crucial to efficiently find small explanations among the (many)

input equations!

5

Another SMT approach needing explanations:

DPLL(T) = General DPLL(X) engine + SolverT for given T

[GHNOT, CAV’04]

Idea similar to CLP(X) framework for Constraint LP

Improves upon Lazy Approach because DPLL gets pruned

as well by T-consequences L (communicated by SolverT)

from T-consistent partial models

(not only from T-inconsistent ones as in lazy approach).

Also outperforms ad-hoc eager translation methods of

Bryant et al on their own processor verification benchmarks.

For backjumping, DPLL(T) builds Conflict Graphs, where the

predecessors of T-consequence nodes L must be the literals in

the explanation of L.

6

Implementing the solver for EUF:
Union-Find and Congruence Closure

Union-find (U-F) data structures maintain equivalence relation

induced by sequence of input unions a1=b1, a2=b2, . . .

Tarjan: sequence of n unions and finds in O(n α(n)) time

Congruence Closure (CC) algorithms maintain a congruence

relation given by sequence of pairs of equations between

ground terms: s1=t1, s2=t2, . . .

Difference w.r.t. equivalence rel.: also monotonicity axioms:

f(x1 . . . xn)=f(y1 . . . yn) if x1=y1 . . . xn=yn

Here wlog. consider only flat eqs: f(a, b)=c or a=b [NO03]

Sequence of n merges in O(n logn) time [e.g., DST80]

7

The Explain operation

INPUT: E and s = t (ground equations) such that E |= s = t

OUTPUT: A small subset E′ ⊆ E

But, what do we understand by small ?

E′ is minimal if for any E′′ s.t. E′′ |= s = t then |E′| ≤ |E′′|.

E′ is irredundant if for any E′′ E′ we have E′′ 6|= s = t.

It is clear that minimality implies irredundancy, but it may be

too difficult to find minimal explanations.

8

Union-Find with Explain

An irredundant explanation for a = b will be of the form

a = a1, a1 = a2, a2 = a3, . . . an = b.

How many different irredundant explanations can we have?

By ignoring redundant equalities, we can assume there

exists only one irredundant explanation each equation.

Therefore, in our case, irredundancy coincides with

minimality.

9

UF with Explain (First attempt)

a c

b

d

e

fg

5 2

6

3 41

1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

Take Explain(d=f) to be the equations in the paths from d

and f to their nearest common ancestor, that is d=e, f=e.

OK!

But Explain(g=c) gives g=c, c=a. Redudant!

Even worse, Explain(a=f) gives a=b, d=e, c=f . Not a proof!

10

UF with Explain (First algorithm)

a c

b

d

e

fg

5 2

6

3 41

1. a→b 2. c→a 3. d→e 4. f→e 5. g→c 6. c←f

For Explain(a=f) only the newest of the eqns in the paths

from a to f to their NCA can be ensured to be in the proof.

Hence, c = f is part of the explanation. Now, recursive call

to Explain(a=c).

Orientation of the equalities allows one to discover the

recursive calls. Try Explain(g=d)!!!.

Complexity O(k lgn) for a proof of size k.

11

UF with Explain (Second algorithm)
If we consider G the graph whose edges are the unions,

looking for Explain(c=e) amounts to looking for the path

between c and e.

c g b

a e

d f

1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

How to find the path efficiently? We will use directed edges

and rooted trees.

12

UF with Explain (Second alg. cntd.)
Suppose we have the following trees after adding edge

number 5.

c g b

a e

d f

1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

Any orientation of c=f breaks the desired structure.

SOLUTION: orient c→ f and reverse all edges between c

and its root.

13

UF with Explain (Second alg. cntd.)
Suppose we have the following trees after adding edge

number 5.

c g b

a e

d f

1. a=b 2. c=a 3. d=e 4. f=e 5. g=c 6. c=f

Any orientation of c=f breaks the desired structure.

Complexity: O(k) for a proof of size k but now UF becomes

O(n lgn) (if smart orientation is chosen).

14

Congruence Closure with Explain (1)

Try to give a modular view here: separate CC from Expl

Each new equality between constants a and b can come from:

A single input merge a=b, or

Two input merges f(a1, a2)=a and f(b1, b2)=b

First idea: keep proof forest as in Alg.2 for U-F, where edges

are labelled with the corresponding input merges.

Example: 1. f(a1)=a 2. f(b1)=b 3. c=b 4. a1=b1

After 4., the proof forest is: a1
4
−→ b1 a

1,2
−→ b

3
←− c

Expl(a=c) finds 1,2,3 and, recursively, 4.

Cost: O(k α(k)), where CC still O(n logn).

The α comes from tricks to avoid exploring twice same edges.

15

Congruence Closure with Explain (2)

Problematic example for first idea:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. a1=b1 5. a1=c1

After 4., the proof forest is: a1
4
−→ b1 a

1,2
−→ b

After 5., the proof forest is: c1
5
−→ a1

4
←− b1 a

1,2
−→ b

2,3
←− c

Expl(a=c) finds 1,2,3 and, recursively, 4,5.

But its subset 1,3,5 is already a proof!

16

Congruence Closure with Explain (3)

Second idea: Maintain proof forest where:
edges are for input merges between cts. only

nodes are classes of cts equal by direct monotonicity

Wlog. assume c occurs at most once as rhs of f(a, b)=c eqs.

Previous example ok now:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. a1=b1 5. a1=c1

After 4., the proof forest is: a1
4
−→ b1 [a, b]

After 5., the proof forest is: c1
5
−→ a1

4
←− b1 [a, b, c]

Expl(a=c) finds eqs 1,3 (the only ones of which a and c are rhs)
and, recursively, 5.

17

Congruence Closure with Explain (4)

Another example:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. f(d1)=d

5. a1=b1 6. c1=d1 7. a=e 8. d=e

After 6.: a1
5
−→ b1 c1

6
−→ d1 [a, b] [c, d]

After 7.: a1
5
−→ b1 c1

6
−→ d1 [a, b]

7
−→ e [c, d]

After 8.: a1
5
−→ b1 c1

6
−→ d1 [a, b]

7
−→ e

8
←− [c, d]

Expl(b=c) finds eqs 7,8 (for going to common ancestor e).

For using 7., Expl(a=b) is required: 1,2, and, recursively, 5.

For using 8., Expl(c=d) is required: 3,4, and, recursively, 6.

18

Congruence Closure with Explain (5)

Maintaining class nodes while keeping CC O(n logn) can be
done if class merge causes tree merge.

But...[this is our current problem] Same example continued:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. f(d1)=d

5. a1=b1 6. c1=d1 7. a=e 8. d=e 9. b1=c1

After 8.: a1
5
−→ b1 c1

6
−→ d1 [a, b]

7
−→ e

8
←− [c, d]

Should 9. b1=c1 have any effect on the rightmost tree? Yes:

Assume 9 belongs to our explanation, and recursively we call
Expl(b=c). Then {3,4, . . . ,9} suffices, instead of
{1,2,3,4,5,6,7,8, . . . ,9}.

Thm: minimal proofs if 6 ∃ two congruent non-singleton classes.

19

Cong. Cl. w/ Explain (Conclusions)

Interesting open problem:
Keep CC O(n logn) and

Find k-step proofs depending only on k (Ours: O(k α(k)))
Proofs minimal (w.r.t. ⊆). This is where we sometimes fail.

In practice (on large set of industrial benchmarks of Bryant et

al for EUF and EUF w/ integer offsets):
Algorithm given here finds almost always (99 % of the

cases?) minimal explanations
Most explanations are small: 4 or 5 steps, sometimes 10.

Many details omitted: Incrementality, Backtracking, Theory

Extensions,...

Stay tuned at www.lsi.upc.es/˜oliveras

20

