Proof-producing
Congruence Closure

Robert Nieuwenhuis and Albert Oliveras

Tech. Univ. Catalonia, Barcelona

The University of Iowa

March 2005
1

W

NOo oA

Overview of this talk

SMT: Satisfiability Modulo Theories
Lazy Approach to SMT
Need for Explain
DPLL(T) Approach to SMT
Need for Explain
Solvers: Union-Find and Congruence Closure
Union-Find with EXxplain
Congruence Closure with Explain
Conclusions and Open Problem

SMT: Satisfiability Modulo Theories

Example where the theory T is = (congruence):

gla)=c N cxz=d N ([f(gla))Ff(c) V gla)=d)

m [heories of interest:
EUF [Burch and Dill '94],
CLU [Bryant, Lahiri and Seshia '02],
separation logic [BLS '03],
arrays, lists, queues,

m Applications: software/hardware verification, circuit design,
compiler optimization, planning, scheduling, ...

Lazy approach to SMT:

—Consider formula as propositional, i.e., ‘forget” theory T.
—REPEAT
SAT solver looks for a propositional model, while
incremental T-solver for conjunctions of literals checks
T-consistency of (partial) model being built.
If T-inconsistent, a lemma is added precluding the model.
UNTIL T-model found OR propositionally unsat.

Constraints imposed by the theory are introduced on demand.

Lazy/eager notification, online/offline SAT solver, extraction of
inconsistency proofs [Barret, Dill and Levitt '96; deMoura and
Ruess '02; Barret, Dill and Stump '02; Flanagan et al '03, etc]

4

EXAMPLE of Lazy approach: 7 is = (congruence)

Model being built by SAT solver and being fed into T-solver:

b=c, f(b)=c f(c)=a
Upon additional input a=#b: incompatible with T
Solver must generate lemma:

b=c N\ f(b)=c A f(c)=a — a=b

because the first three atoms are the explanation of a=b.

Crucial to efficiently find small explanations among the (many)
input equations!

Another SMT approach needing explanations:

DPLL(T) = General DPLL(X) engine -+ Solvery for given T
[GHNOT, CAV’'04]

m Idea similar to CLP(X) framework for Constraint LP
m Improves upon Lazy Approach because DPLL gets pruned

as well by T-consequences L (communicated by Solvery)
from T-consistent partial models

(not only from T-inconsistent ones as in lazy approach).
m Also outperforms ad-hoc eager translation methods of
Bryant et al on their own processor verification benchmarks.

For backjumping, DPLL(T) builds Conflict Graphs, where the
predecessors of T-consequence nodes L must be the literals in
the explanation of L.

Implementing the solver for EUF:
Union-Find and Congruence Closure

Union-find (U-F) data structures maintain equivalence relation
induced by sequence of input unions ayj=b1,a>=b», ...

Tarjan: sequence of n unions and finds in O(n a(n)) time

Congruence Closure (CC) algorithms maintain a congruence

relation given by sequence of pairs of equations between

ground terms: s1=tq1, so=to,...

Difference w.r.t. equivalence rel.: also monotonicity axioms:
f(x1...2n)=f(y1...yn) if x11=y1 ... 2n=Un

Here wlog. consider only flat eqgs: f(a,b)=c or a=b [NOO3]

Sequence of n merges in O(nlogn) time [e.g., DST80]

T he Explain operation

INPUT: FE and s =t (ground equations) such that E =s =t
OUTPUT: A small subset E'/ C E

But, what do we understand by small 7

= £’ is minimal if for any E” s.t. B =s=1t then |E'| < |E"|.
s I/ is irredundant if for any E” ¢ E' we have E” [~ s =t.

It is clear that minimality implies irredundancy, but it may be
too difficult to find minimal explanations.

Union-Find with Explain

An irredundant explanation for a = b will be of the form

a=aj,a; =ap,ap =asz,...an = b.
How many different irredundant explanations can we have?

By ignoring redundant equalities, we can assume there
exists only one irredundant explanation each equation.

T herefore, in our case, irredundancy coincides with
minimality.

UF with Explain (First attempt)

/g\ 5\

l.a=b 2.c=a 3.d=e 4. f=e 5. g=c 6. c=f

Take Explain(d=f) to be the equations in the paths from d

and f to their nearest common ancestor, that is d=e, f=e.
OK!

But Explain(g=c) gives g=c, c=a. Redudant!
Even worse, Explain(a=f) gives a=b, d=e,c=f. Not a proof!

10

UF with Explain (First algorithm)

R

s b

.a—b 2. c—a 3.d—e 4. f—e 5. g—c 6.c—f
For Explaln(a:f) only the newest of the eqns in the paths
from a to f to their NCA can be ensured to be in the proof.
Hence, ¢ = f is part of the explanation. Now, recursive call
to Explain(a=c).
Orientation of the equalities allows one to discover the
recursive calls. Try Explain(g=d)!!!.
Complexity O(klgn) for a proof of size k.

11

UF with Explain (Second algorithm)
m If we consider G the graph whose edges are the unions,
looking for Explain(c=e) amounts to looking for the path

between ¢ and e. @
OmONO OO
\/

l.a=b 2. c=a 3.d=e 4. f=e 5. g=c 6. c=f
m How to find the path efficiently? We will use directed edges
and rooted trees.
12

UF with Explain (Second alg. cntd.)

m Suppose we have the following trees after adding edge

number 5.

\
O—® © OO

l.a=b 2. c=a 3.d=e 4. f=e 5. g=c 6. c=f
= Any orientation of ¢c=f breaks the desired structure.
m SOLUTION: orient ¢ — f and reverse all edges between c
and its root.

13

UF with Explain (Second alg. cntd.)

m Suppose we have the following trees after adding edge

number 5.

s

—(© OO

l.a=b 2. c=a 3.d=e 4. f=e 5. g=c 6. c=f
m Any orientation of ¢c=f breaks the desired structure.
s Complexity: O(k) for a proof of size k but now UF becomes
O(nlgn) (if smart orientation is chosen).

14

Congruence Closure with Explain (1)

Try to give a modular view here: separate CC from Expl

Each new equality between constants ¢ and b can come from:
m A single input merge a=b, or
= Two input merges f(ai,a>)=a and f(by,by)=b

First idea: keep proof forest as in Alg.2 for U-F, where edges
are labelled with the corresponding input merges.

Example: 1. f(a1)=a 2. f(by)=b 3.c=b 4. a1=bq

: 1,2
After 4., the proof forest is: a1 4, b1 a ——

Fxpl(a=c) finds 1,2,3 and, recursively, 4.

3
b < C

Cost: O(k a(k)), where CC still O(nlogn).
The o comes from tricks to avoid exploring twice same edges.

15

Congruence Closure with Explain (2)

Problematic example for first idea:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. a1=by 5. a1=cq

: 1,2
After 4., the proof forest is: aq 4, b1 a—b

: 1,2 . 2
After 5., the proof forest is: ¢1 2, aq ol b1 a— b+« 3 C

Fxpl(a=c) finds 1,2,3 and, recursively, 4,5.

But its subset 1,3,5 is already a proof!
16

Congruence Closure with Explain (3)

Second idea: Maintain proof forest where:
m edges are for input merges between cts. only
m nodes are classes of cts equal by direct monotonicity

WIlog. assume ¢ occurs at most once as rhs of f(a,b)=c eqgs.

Previous example ok now:
1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. a1=by 5. a1=cq
After 4., the proof forest is: aj 4, by [a, b]

After 5., the proof forest is: ¢1 N aq & b1 [a, b, c]

Expl(a=c) finds eqs 1,3 (the only ones of which a and ¢ are rhs)
and, recursively, 5.

17

Congruence Closure with Explain (4)

Another example:

1. f(a1)=a 2. f(b1)=b 3. f(c1)=c 4. f(d1)=d

5. a1=bq 6. c1=dy 7. a=—e 8. d=e
_ 5 6 - :
After 6.: a1 — by c1 — di a, b [C, d]
: 5 6 i I
After 7.. a1 — by c1 — dq a,b] — e [c, d]
After 8.: aj >, b1 c1 5, dq a, b] 7, e 8 [c, d]

FExpl(b=c) finds eqgs 7,8 (for going to common ancestor e).
For using 7., Expl(a=b) is required: 1,2, and, recursively, 5.
For using 8., Expl(c=d) is required: 3,4, and, recursively, 6.

18

Congruence Closure with Explain (5)

Maintaining class nodes while keeping CC O(nlogn) can be
done if class merge causes tree merge.

But...[this is our current problem] Same example continued:
1. flap)=a 2. f(by)=b 3. f(c1)=c 4. f(d1)=d

5. a1=bq 6. c1=dq 7. a=e 8. d=e 9. b1=cq

After 8.: ay — by ¢1 -2 dy [a,0] —— e <2~ [, d]

Should 9. by=c1 have any effect on the rightmost tree? Yes:

Assume 9 belongs to our explanation, and recursively we call

Expl(b=c). Then {3,4,...,9} suffices, instead of

{1,2,3,4,5,6,7,8,...,9}.

Thm: minimal proofs if A two congruent non-singleton classes.
19

Cong. Cl. w/ Explain (Conclusions)

Interesting open problem:
s Keep CC O(nlogn) and
m Find k-step proofs depending only on k£ (Ours: O(k a(k)))
s Proofs minimal (w.r.t. €). This is where we sometimes fail.

In practice (on large set of industrial benchmarks of Bryant et
al for EUF and EUF w/ integer offsets):

s Algorithm given here finds almost always (99 % of the
cases?) minimal explanations

m Most explanations are small: 4 or 5 steps, sometimes 10.

Many details omitted: Incrementality, Backtracking, Theory
Extensions,...

Stay tuned at www.lsi.upc.es/ oliveras

20

