Congruence Closure and Extensions

Albert Oliveras UPC, Barcelona

Joint work with Robert Nieuwenhuis

The University of Iowa March 2005

Overview of this talk

- 1. Formulation of the problem
- 2. Union-Find
 - Abstract Union-Find
 - The Collapse rule
 - The Compose rule
 - Choosing a good ordering
- 3. Congruence closure (CC)
 - Abstract Congruence Closure
 - Initial transformations
 - General idea
 - Data structures and algorithm
 - Running example
 - Analysis of the algorithm
- 4. CC with integer offsets

Formulation of the problems

INPUT: set of ground equations *E* and *s*=*t*. **QUESTION:** Is $E \models s=t$ true?

- Converting E into a convergent TRS will give us a decision procedure.
- Tiwari's Abstract Congruence Closure gives us a solution.
- Our goal: obtention of efficient strategies in practice.

Abstract Union-Find

- Signature $\Sigma = \{c_1, c_2, \dots, c_n\}$ (only constants).
- Let \succ a total ordering on constants, $c_1 \succ c_2 \succ \ldots \succ c_n$.

Any strategy will give us a convergent TRS, but, which is the most efficient one?

Abstract Union-Find(cntd.)

- Any strategy orienting all equations gives us a terminating TRS.
- Concerning confluence, which situations have to be avoided? (remember critical pair criterion)
- Our strategy: avoid situations where Collapse applies.
- Working with 4 rules instead of 5 is a reasonable way to make the implementation more efficient.

Avoiding applications of Collapse

Which rules could transform a state in which Collapse does not apply into one in which it does?

Orient
$$\frac{c = d, E}{c \to d, E}$$
 if $c \succ d$ Delete $\frac{c = c, E}{E}$ Simplify $\frac{c = d, c \to d', E}{d' = d, c \to d', E}$ Collapse $\frac{c \to d', c \to d, E}{c \to d', d \to d', E}$ if $d \succ d'$ Compose $\frac{c \to d, d \to d', E}{c \to d', d \to d', E}$

Only Orient and Compose (assuming we never apply Collapse).

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\{c \rightarrow d, c \rightarrow d', E\}$ with $d \succ d'$.
- Consider the case in which $c \rightarrow d'$ has just been generated (by Orient or Compose).

• Case 1:

Orient
$$\frac{c = d', \{c \to d, E'\}}{c \to d', \{c \to d, E'\}}$$

but note that here Simplify also applies

Simplify
$$\frac{c = d', c \rightarrow d, E'}{d = d', c \rightarrow d, E'}$$

and now Collapse is not applicable. **SOLUTION:** Simplify has priority over Orient.

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\{c \rightarrow d, c \rightarrow d', E\}$ with d > d'.
- Consider the case in which $c \rightarrow d'$ has just been generated (by Orient or Compose).
 - Case 2:

Compose
$$\frac{c \to e, e \to d', \{c \to d, E'\}}{c \to d', e \to d', \{c \to d, E'\}}$$

but note that e has to be d (why?) Thus, we have $Compose \; \frac{c \to d, d \to d', E'}{c \to d', d \to d', E'}$

and in this new state Collapse does not apply.

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\{c \rightarrow d, c \rightarrow d', E\}$ with d > d'.
- The case in which $c \rightarrow d'$ has just been generated (by Orient or Compose) can be avoided by exhaustively applying Simplify before Orient.
- The case in which $c \rightarrow d$ has just been generated (by Orient or Compose) is similar.
- Using this strategy, we can get rid of Collapse, because it will never be applicable.

The Compose rule

- Remember: our goal is to obtain a convergent (confluent and terminating) TRS.
- Termination is ensured using any strategy.
- We have seen that if Simplify is exhaustively applied before
 Orient, all the intermediate states will give us confluent
 TRS.
- CONCLUSION: Compose is not necessary. So, let's forget about it (for the moment).

Choosing a good ordering

- According to the previous slides, our procedure will run the following loop until there is no unoriented equation:
 - 1. Pick an equation c = d.
 - 2. Apply Simplify exhaustively and get c' = d'.
 - 3. If c' is d', Delete. Otherwise, Orient it giving $c' \rightarrow d'$ if c' > d'.
- Complexity: O(nL), being n is the number of equations and
 L the number of possible applications of Simplify to an equation.
- Instead of L, we can compute the maximal number of times a constant a can be rewritten. That is, the maximum length of a path of the form $a \rightarrow a_1 \rightarrow \ldots \rightarrow a_n$.
- **GOAL:** minimize the length of such a path

Choosing a good ordering (contd.)

- Given the ordering $a_1 \succ a_2 \succ \ldots \succ a_n$, and the equations $\{a_1 = a_2, a_2 = a_3, \ldots, a_{n-1} = a_n\}$ we can get a path of length $n: a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n$ (worst case!).
- Improvement: choose the ordering on the fly.
- Given a simplified equation c = d (c and d are normal forms with respect to the TRS defined so far), its orientation will be c → d if |c| ≤ |d|, being |c| (resp. |d|) the number of constants in the equivalence class of c (resp. d).
- Since for each oriented rule $c \rightarrow d$, the class of |c| at least doubled its size, any path has length at most $\lg n$, being n the number of constants.
- With these ordering restrictions, the complexity of the procedure is O(m lg n), being m the number of equations and n the number of constants.

Using Compose to improve the efficiency

- Imagine we pick the equation $c_0 = d$. We first have to Simplify it exhaustively: $c_0 \rightarrow c1 \rightarrow \ldots \rightarrow c_k$, being c_k its normal form.
- Later, we may pick another equation $c_0 = e$, and c_0 will have to be normalized using at least the previous k Simplify steps. Redundant work!!!
- SOLUTION: the first time we normalize c, we can at the same time apply Compose (compress the path) and get the oriented equations $c_i \rightarrow c_k$ for i in $0 \dots k 1$.
- The next time we need to normalize c we will perform k steps in a single one, using the rule $c \rightarrow c_k$.
- This optimization, known as path-compression, allows one to run the procedure in time O(mα(m,n)), where α(m,n) is a VERY slow-growing function.

Abstract Congruence Closure

INPUT: set of ground equations *E* and *s*=*t*. **QUESTION:** Is $E \models s=t$ true?

- Equations in E and s = t build over signature Σ consisting only of fixed-arity function symbols and constants.
- Rules are the ones of Abstract Union-Find plus:

$$\begin{array}{|c|c|c|c|c|} \mbox{Extend} & \frac{s[f(c_1, \dots, c_k)] = t, E}{s[c] = t, f(c_1, \dots, c_k) \to c, E} \mbox{ if } f \in \Sigma, \ c \in K \\ \hline & Simplify \ \frac{s[u] = t, u \to c, E}{s[c] = t, u \to c, E} \\ \mbox{Superpose} & \frac{f(c_1, \dots, c_k) = c, f(c_1, \dots, c_k) = d, E}{c = d, f(c_1, \dots, c_k) = c, E} \\ \hline & Collapse \ \frac{f(\dots, c, \dots) \to d, c \to c', E}{f(\dots, c', \dots) \to d, c \to c', E} \\ \hline \end{array}$$

Initial transformations

First of all, two initial transformations are performed:

- 1. Curryfy (like in the implementation of FP): $s[f(c_1, \dots, c_n)] = t, E$ $\overline{s[\underbrace{\cdot(\cdot(\dots\cdot(\cdot(f, c_1), c_2), \dots, c_n)]} = t, E}$
 - After Curryfying: only one binary symbol "·" and constants.
 - Example: Curryfying f(a, g(b), c) gives $\cdot(\cdot(\cdot(f, a), \cdot(g, b)), c)$
- 2. Flatten(Extend + Simplify):
 - Allows one to assume: terms of depth ≤ 1
 - Introduces a linear number of new constants
 - Example: Flattening { $\cdot(\cdot(\cdot(f,a), \cdot(g,b)), c) = i$ } gives { $\cdot(f,a) \to d, \ \cdot(g,b) \to e, \ \cdot(d,e) \to h, \ \cdot(h,c) = i$ }

Reformulation of the problem

Now the CC problem is: $E \models a = b$? (a, b, c, d, e cts.)where equations in E are of the form $\cdot(c, d) = e$ or c = d.

The rules to be applied are the ones of the Abstract Union-Find plus:

$$\begin{array}{c} \text{Superpose} \ \displaystyle \frac{\cdot(c_1,c_2) \rightarrow c, \cdot(c_1,c_2) \rightarrow d, E}{c = d, \cdot(c_1,c_2) \rightarrow c, E} \\ \\ \text{Collapse}_1 \ \displaystyle \frac{\cdot(c_1,c_2) \rightarrow d, c_1 \rightarrow c_1', E}{\cdot(c_1',c_2) \rightarrow d, c_1 \rightarrow c_1', E} \end{array} \\ \begin{array}{c} \text{Collapse}_2 \ \displaystyle \frac{\cdot(c_1,c_2) \rightarrow d, c_2 \rightarrow c_2', E}{\cdot(c_1,c_2') \rightarrow d, c_2 \rightarrow c_2', E} \\ \\ \\ \text{Compose} \ \displaystyle \frac{\cdot(c_1,c_2) \rightarrow c, c \rightarrow d, E}{\cdot(c_1,c_2) \rightarrow d, c \rightarrow d, E} \end{array} \end{array}$$

Ideas behind the algorithm

- Due to the flattening process each term can now be identified with a constant. The question whether s = t can be reduced to the question $c_s = c_t$ for certain constants c_s , c_t .
- Therefore, our goal is to detect which new equalities between constants arise due to the function symbols.
- In the rules, these new equalities are detected by Superpose.
- IDEA: we will need a Union-Find data structure and some procedure to detect these new equalities between constants.

Congruence closure: our data structures

- 1. Pending unions: a list of pairs of cts yet to be merged.
- 2. Representative table: array indexed by constants, with for each constant c its current representative rep(c).
- 3. Class lists: for each repres., the list of all cts in its class.
- 4. Lookup table: for each input term (a, b), Lookup(rep(a), rep(b)) returns in constant time a constant csuch that (a, b) = c (\perp if there is none).
- 5. Use lists: for each representative a, the list of input equations $\cdot(b,c) = d$ such that a is rep(b) or rep(c) or both.

Congruence closure: our algorithm

Notation: c' means rep(c)While $Pending \neq \emptyset$ Do remove a = b from *Pending* If $a' \neq b'$ and, wlog., $|ClassList(a')| \leq |ClassList(b')|$ Then For each c in ClassList(a') Do set rep(c) to b' and add c to ClassList(b')**EndFor** For each (c, d) = e in UseList(a') Do If Lookup(c', d') is some f and $f' \neq e'$ Then add e' = f' to *Pending* EndIf set Lookup(c', d') to e'add $\cdot(c,d) = e$ to UseList(b')EndFor EndIf **EndWhile**

Running example

$$\begin{cases} f(a) = g(b) \\ g(c) = h(f(c), g(a)) \\ b = c \\ f(c) = g(a) \\ h(d, d) = g(b) \\ g(a) = d \end{cases} \right\} \Longrightarrow \begin{cases} \cdot (f, a) = e_1 \\ \cdot (g, b) = e_2 \\ \cdot (g, c) = e_3 \\ \cdot (f, c) = e_4 \\ \cdot (h, e_4) = e_5 \\ \cdot (g, a) = e_6 \\ \cdot (e_5, e_6) = e_7 \\ \cdot (h, d) = e_8 \\ \cdot (e_8, d) = e_9 \end{bmatrix} + \begin{bmatrix} e_1 = e_2 \\ e_3 = e_7 \\ b = c \\ e_4 = e_6 \\ e_9 = e_2 \\ e_6 = d \end{bmatrix}$$

And we initialize *Lookup* table:

$$\{ \cdot (f,a) = e_1, \cdot (g,b) = e_2, \cdot (g,c) = e_3, \cdot (f,c) = e_4, \cdot (h,e_4) = e_5, \cdot (g,a) = e_6, \cdot (e_5,e_6) = e_7, \cdot (h,d) = e_8, \cdot (e_8,d) = e_9 \}$$

$$\begin{cases} f(a) = g(b) \\ g(c) = h(f(c), g(a)) \\ b = c \\ f(c) = g(a) \\ h(d, d) = g(b) \\ g(a) = d \end{cases} \} \Longrightarrow \begin{cases} \cdot (f, a) = e_1 \\ \cdot (g, b) = e_2 \\ \cdot (g, c) = e_3 \\ \cdot (f, c) = e_4 \\ \cdot (h, e_4) = e_5 \\ \cdot (g, a) = e_6 \\ \cdot (e_5, e_6) = e_7 \\ \cdot (h, d) = e_8 \\ \cdot (e_8, d) = e_9 \end{bmatrix} + \begin{bmatrix} e_1 = e_2 \\ e_3 = e_7 \\ b = c \\ e_4 = e_6 \\ e_9 = e_2 \\ e_6 = d \end{bmatrix}$$

Similarly, initialization for UseList is: $UseList(a) = \{ \cdot (f, a) = e_1, \cdot (g, a) = e_6 \}$ $UseList(b) = \{ \cdot (g, b) = e_2 \}$ $UseList(c) = \{ \cdot (g, c) = e_3, \cdot (f, c) = e_4 \}$:

$\begin{bmatrix} Pe \end{bmatrix}$	endir	ng -		
e_1	=	e_2	UseList	
e_3	=	e_7	$b = \{ \cdot(g, b) = e_2 \}$	$e_6 = \{ \cdot (e_5, e_6) = e_7 \}$
$\begin{vmatrix} b \end{vmatrix}$	=	С	$c = \{ \cdot (g, c) = e_3, \cdot (f, c) = e_4 \}$	$e_8 = \{ \cdot (e_8, d) = e_9 \}$
e_4	=	e_6	$d = \{ \cdot (h, d) = e_8, \cdot (e_8, d) = e_9 \}$	$e_1 = e_2 = e_3 = e_9 = \emptyset$
e9	=	e_2	$e_4 = \{ \cdot (h, e_4) = e_5 \}$	$e_5 = \{ \cdot (e_5, e_6) = e_7 \}$
e_6	=	d _	-	-

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	b	С	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9

$$\begin{bmatrix} Pending \\ e_1 &= e_2 \\ e_3 &= e_7 \\ b &= c \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} UseList \\ b = \{ \cdot(g,b) = e_2 \} \\ c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_4 = \{ \cdot(h,e_4) = e_5 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	c	d	e_1	e_2	e_3	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	b	С	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9

In normal form: $e_1 \to e_2$. We have $UseList(e_1) = \emptyset$. $\begin{bmatrix} Pending \\ e_1 &= e_2 \\ e_3 &= e_7 \\ b &= c \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} UseList \\ b = \{\cdot(g,b) = e_2\} & e_6 = \{\cdot(e_5,e_6) = e_7\} \\ c = \{\cdot(g,c) = e_3, \cdot(f,c) = e_4\} & e_8 = \{\cdot(e_8,d) = e_9\} \\ d = \{\cdot(h,d) = e_8, \cdot(e_8,d) = e_9\} & e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_4 = \{\cdot(h,e_4) = e_5\} & e_5 = \{\cdot(e_5,e_6) = e_7\} \end{bmatrix}$

Constant	a	b	c	d	e_1	e_2	e_3	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	b	c	d	e_2	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9

In normal form: $e_3 \rightarrow e_7$.

$$\begin{bmatrix} Pending\\ e_3 &= & e_7\\ b &= & c\\ e_4 &= & e_6\\ e_9 &= & e_2\\ e_6 &= & d \end{bmatrix} \begin{bmatrix} UseList\\ b = \{\cdot(g,b) = e_2\} & e_6 = \{\cdot(e_5,e_6) = e_7\}\\ c = \{\cdot(g,c) = e_3, \cdot(f,c) = e_4\} & e_8 = \{\cdot(e_8,d) = e_9\}\\ d = \{\cdot(h,d) = e_8, \cdot(e_8,d) = e_9\} & e_1 = e_2 = e_3 = e_9 = \emptyset\\ e_4 = \{\cdot(h,e_4) = e_5\} & e_5 = \{\cdot(e_5,e_6) = e_7\} \end{bmatrix}$$

Constant	a	b	c	d	e_1	e_2	e_{3}	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	b	c	d	e_2	e_2	e_{3}	e_{4}	e_5	e_6	e_7	e_8	eg

In normal form: $e_3 \rightarrow e_7$. We have $UseList(e_3) = \emptyset$.

Pending	UseList]
$ \begin{array}{cccc} e_3 &\equiv & e_7 \\ b &= & c \end{array} $	$b = \{ \cdot (g, b) = e_2 \}$	$e_6 = \{ \cdot (e_5, e_6) = e_7 \}$
$e_4 = e_6$	$c = \{ \cdot(g, c) = e_3, \cdot(f, c) = e_4 \}$ $d = \{ \cdot(h, d) = e_8, \cdot(e_8, d) = e_9 \}$	$e_8 = \{ \cdot (e_8, a) = e_9 \}$ $e_1 = e_2 = e_3 = e_9 = \emptyset$
$\begin{array}{ccc} e_9 &\equiv& e_2\\ e_6 &=& d \end{array}$	$e_4 = \{ \cdot (h, e_4) = e_5 \}$	$e_5 = \{ \cdot (e_5, e_6) = e_7 \}$

Constant	a	b	c	d	e_1	e_2	e_{3}	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	b	c	d	e_2	e_2	e_7	e_{4}	e_5	e_6	e_7	e_8	eg

In normal form: $b \rightarrow c$.

Pending	,]	UseList	
b = c		$b = \{ \cdot(g, b) = e_2 \}$	$e_6 = \{ \cdot (e_5, e_6) = e_7 \}$
$e_4 = e$	6	$c = \{ \cdot(g, c) = e_3, \cdot(f, c) = e_4 \}$	$e_8 = \{ \cdot (e_8, d) = e_9 \}$
$e_9 = e$	2	$d = \{ \cdot (h, d) = e_8, \cdot (e_8, d) = e_9 \}$	$e_1 = e_2 = e_3 = e_9 = \emptyset$
$\left[\begin{array}{cc} e_6 \end{array} = d \end{array} \right]$,]	$e_4 = \{ \cdot (h, e_4) = e_5 \}$	$e_5 = \{ \cdot (e_5, e_6) = e_7 \}$

Constant	a	b	С	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	c	С	d	e_2	e_2	e_7	e_4	e_5	e_6	e_7	e_8	eg

Lookup : { $\cdot(f, a) = e_1, \cdot(g, b) = e_2, \cdot(g, c) = e_3, \cdot(f, c) = e_4, \cdot(h, e_4) = e_5, \cdot(g, a) = e_6, \cdot(e_5, e_6) = e_7, \cdot(h, d) = e_8, \cdot(e_8, d) = e_9$ }

In normal form: $b \to c$. Let's treat $\cdot(g, b) = e_2$. Since $Lookup(g', b') = Lookup(g, c) = e_3$ and $e'_3 \neq e'_2$, we add $e_7 = e_2$ to *Pending*.

 $\begin{bmatrix} Pending \\ b = c \\ e_4 = e_6 \\ e_9 = e_2 \\ e_6 = d \end{bmatrix} \begin{bmatrix} b = \{\cdot(g, b) = e_2\} & e_6 = \{\cdot(e_5, e_6) = e_7\} \\ c = \{\cdot(g, c) = e_3, \cdot(f, c) = e_4\} & e_8 = \{\cdot(e_8, d) = e_9\} \\ d = \{\cdot(h, d) = e_8, \cdot(e_8, d) = e_9\} & e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_4 = \{\cdot(h, e_4) = e_5\} & e_5 = \{\cdot(e_5, e_6) = e_7\} \end{bmatrix}$ $\frac{Constant}{Representative} \begin{vmatrix} a & b & c & d & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 & e_9 \\ \hline Representative & a & c & c & d & e_2 & e_2 & e_7 & e_4 & e_5 & e_6 & e_7 & e_8 & e_9 \\ \hline Representative & a & c & c & d & e_2 & e_2 & e_7 & e_4 & e_5 & e_6 & e_7 & e_8 & e_9 \\ \hline Lookup : \{\cdot(f, a) = e_1, \cdot(g, b) = e_2, \cdot(g, c) = e_3, \cdot(f, c) = \\ e_4, \cdot(h, e_4) = e_5, \cdot(g, a) = e_6, \cdot(e_5, e_6) = e_7, \cdot(h, d) = e_8, \cdot(e_8, d) = e_9 \end{bmatrix}$

In normal form: $b \to c$. Let's treat $\cdot(g, b) = e_2$. Since $Lookup(g', b') = Lookup(g, c) = e_3$ and $e'_3 \neq e'_2$, we add $e_7 = e_2$ to Pending. Now, $Lookup(g, c) = e_7$ and add $\cdot(g, b) = e_2$ to UseList(c).

$$\begin{bmatrix} Pending \\ e_7 &= e_2 \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot (g,c) = e_3, \cdot (f,c) = e_4, \cdot (g,b) = e_2 \} \\ e_6 = \{ \cdot (e_5, e_6) = e_7 \} \\ e_8 = \{ \cdot (e_8, d) = e_9 \} \\ d = \{ \cdot (h,d) = e_8, \cdot (e_8,d) = e_9 \} \\ e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_4 = \{ \cdot (h,e_4) = e_5 \} \\ e_5 = \{ \cdot (e_5, e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	С	c	d	e_2	e_2	e_7	e_4	e_5	e_6	e_7	e_8	eg

In normal form: $e_2 \rightarrow e_7$.

$\begin{bmatrix} Pe \end{bmatrix}$	endi	ng] [UseList	-
<i>e</i> 7	=	e_2		$c = \{ \cdot(g,c) = e_3, \cdot(f,c) =$	$= e_4, \cdot (g, b) = e_2\}$
e_4	=	e_6		$e_6 = \{ \cdot (e_5, e_6) = e_7 \}$	$e_8 = \{ \cdot (e_8, d) = e_9 \}$
e9	=	e_2		$d = \{ \cdot (h, d) = e_8, \cdot (e_8, d) = e_9 \}$	$e_1 = e_2 = e_3 = e_9 = \emptyset$
e_6	=	d .		$e_4 = \{ \cdot (h, e_4) = e_5 \}$	$e_5 = \{ \cdot (e_5, e_6) = e_7 \}$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	eg
Representative	a	c	c	d	<i>e</i> 7	<i>e</i> 7	e_7	e_4	e_5	e_6	e_7	e_8	e_9

In normal form: $e_2 \rightarrow e_7$. Again $UseList(e_2) = \emptyset$.

$\begin{bmatrix} Pe \end{bmatrix}$	endi	ng] [UseList	-
<i>e</i> 7	=	e_2		$c = \{ \cdot(g,c) = e_3, \cdot(f,c) =$	$= e_4, \cdot (g, b) = e_2\}$
e_4	=	e_6		$e_6 = \{ \cdot (e_5, e_6) = e_7 \}$	$e_8 = \{ \cdot (e_8, d) = e_9 \}$
e9	=	e_2		$d = \{ \cdot (h, d) = e_8, \cdot (e_8, d) = e_9 \}$	$e_1 = e_2 = e_3 = e_9 = \emptyset$
e_6	=	d .		$e_4 = \{ \cdot (h, e_4) = e_5 \}$	$e_5 = \{ \cdot (e_5, e_6) = e_7 \}$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	c	c	d	e_7	e_7	e_7	e_4	e_5	e_6	e_7	e_8	e_9

In normal form: $e_4 \rightarrow e_6$.

$$\begin{bmatrix} Pending \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_4 = \{ \cdot(h,e_4) = e_5 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	c	С	\overline{d}	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_9

Lookup : { $\cdot(f, a) = e_1, \cdot(g, b) = e_2, \cdot(g, c) = e_7, \cdot(f, c) = e_4, \cdot(h, e_4) = e_5, \cdot(g, a) = e_6, \cdot(e_5, e_6) = e_7, \cdot(h, d) = e_8, \cdot(e_8, d) = e_9$ }

In normal form: $e_4 \rightarrow e_6$. Let's treat $\cdot(h, e_4) = e_5$. Since $Lookup(h', e'_4) = Lookup(h, e_6) = \emptyset$, just add $Lookup(h, e_6) = e_5$ to Lookup and $\cdot(h, e_4)$ to $UseList(e_6)$.

$$\begin{bmatrix} Pending \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_4 = \{ \cdot(h,e_4) = e_5 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_3	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	С	c	d	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	eg

In normal form: $e_4 \rightarrow e_6$. Let's treat $\cdot(h, e_4) = e_5$. Since $Lookup(h', e'_4) = Lookup(h, e_6) = \emptyset$, just add $Lookup(h, e_6) = e_5$ to Lookup and $\cdot(h, e_4)$ to $UseList(e_6)$.

$$\begin{bmatrix} Pending \\ e_4 &= e_6 \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	С	c	d	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	eg

Lookup: $\{ \cdot (f, a) = e_1, \cdot (g, b) = e_2, \cdot (g, c) = e_7, \cdot (f, c) = e_4, \cdot (h, e_4) = e_5, \cdot (g, a) = e_6, \cdot (e_5, e_6) = e_7, \cdot (h, d) = e_8, \cdot (e_8, d) = e_9, \cdot (h, e_6) = e_5 \}$

In normal form: $e_9 \rightarrow e_7$ (and not the other way around). Again $UseList(e_9) = \emptyset$.

$$\begin{bmatrix} Pending \\ e_9 &= e_2 \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	c	d	e_1	e_2	e_{3}	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	С	c	d	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_7

Lookup : { $\cdot(f, a) = e_1, \cdot(g, b) = e_2, \cdot(g, c) = e_7, \cdot(f, c) = e_4, \cdot(h, e_4) = e_5, \cdot(g, a) = e_6, \cdot(e_5, e_6) = e_7, \cdot(h, d) = e_8, \cdot(e_8, d) = e_9, \cdot(h, e_6) = e_5$ }

In normal form: $d \rightarrow e_6$ (and not the other way around).

$$\begin{bmatrix} Pending \\ e_6 &= d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix} \begin{bmatrix} UseList \\ e_4, \cdot(g,b) = e_2 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$$

Constant	a	b	c	d	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
Representative	a	c	c	e_6	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_7

Lookup: $\{\cdot(f,a) = e_1, \cdot(g,b) = e_2, \cdot(g,c) = e_7, \cdot(f,c) = e_4, \cdot(h,e_4) = e_5, \cdot(g,a) = e_6, \cdot(e_5,e_6) = e_7, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9, \cdot(h,e_6) = e_5\}$

In normal form: $d \to e_6$ (and not the other way around). Let's treat $\cdot(h,d) = e_8$. Since $Lookup(h',d') = Lookup(h,e_6) = e_5$ and $e'_8 \neq e'_5$, add $e_5 = e_8$ to Pending. We also add $\cdot(h,d) = e_8$ to $UseList(e_6)$.

 $\begin{bmatrix} Pending \\ e_6 = d \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \\ d = \{ \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \end{bmatrix}$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_{4}	e_5	e_6	e_7	e_8	e_9
Representative	a	С	c	e_6	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_7

Lookup: $\{ \cdot (f, a) = e_1, \cdot (g, b) = e_2, \cdot (g, c) = e_7, \cdot (f, c) = e_4, \cdot (h, e_4) = e_5, \cdot (g, a) = e_6, \cdot (e_5, e_6) = e_7, \cdot (h, d) = e_8, \cdot (e_8, d) = e_9, \cdot (h, e_6) = e_5 \}$

In normal form: $d \to e_6$ (and not the other way around). Let's treat $\cdot(h,d) = e_8$. Since $Lookup(h',d') = Lookup(h,e_6) = e_5$ and $e'_8 \neq e'_5$, add $e_5 = e_8$ to Pending. We also add $\cdot(h,d) = e_8$ to $UseList(e_6)$.

$$\begin{bmatrix} Pending \\ e_5 = e_8 \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5, \cdot(h,d) = e_8 \} \\ d = \{ \cdot(h,d) = e_8 \} \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \end{bmatrix}$$

Constant	a	b	c	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	eg
Representative	a	c	c	e_6	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_7

Lookup: $\{\cdot(f,a) = e_1, \cdot(g,b) = e_2, \cdot(g,c) = e_7, \cdot(f,c) = e_4, \cdot(h,e_4) = e_5, \cdot(g,a) = e_6, \cdot(e_5,e_6) = e_7, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9, \cdot(h,e_6) = e_5\}$

In normal form: $d \to e_6$ (and not the other way around). Let's treat $\cdot(h,d) = e_8$. Since $Lookup(h',d') = Lookup(h,e_6) = e_5$ and $e'_8 \neq e'_5$, add $e_5 = e_8$ to Pending. We also add $\cdot(h,d) = e_8$ to $UseList(e_6)$.

$$\begin{bmatrix} Pending\\ e_5 = e_8 \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \}\\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \}\\ e_1 = e_2 = e_3 = e_9 = \emptyset\\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \ e_8 = \{ \cdot(e_8,d) = e_9 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	e_{9}
Representative	a	c	c	e_6	e_7	e_7	e_7	e_6	e_5	e_6	e_7	e_8	e_7

Lookup: $\{\cdot(f,a) = e_1, \cdot(g,b) = e_2, \cdot(g,c) = e_7, \cdot(f,c) = e_4, \cdot(h,e_4) = e_5, \cdot(g,a) = e_6, \cdot(e_5,e_6) = e_7, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9, \cdot(h,e_6) = e_5, \cdot(e_8,e_6) = e_9\}$

In normal form: $e_5 \rightarrow e_8$. Let's treat $\cdot(e_5, e_6) = e_7$. Since $Lookup(e'_5, e'_6) = Lookup(e_8, e_6) = e_9$, we should add $e'_7 = e'_9$, but it is discarded because it already holds.

$$\begin{bmatrix} Pending \\ e_5 = e_8 \end{bmatrix} \begin{bmatrix} c = \{ \cdot (g,c) = e_3, \cdot (f,c) = e_4, \cdot (g,b) = e_2 \} \\ e_6 = \{ \cdot (e_5,e_6) = e_7, \cdot (h,e_6) = e_5, \cdot (h,d) = e_8, \cdot (e_8,d) = e_9 \} \\ e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_5 = \{ \cdot (e_5,e_6) = e_7 \} \\ e_8 = \{ \cdot (e_8,d) = e_9 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	<i>e</i> 6	e_7	e_8	e_9
Representative	a	c	С	e_6	e_7	e_7	e_7	e_6	e_8	e_6	e_7	e_8	e_7

Lookup : $\{\cdot(f,a) = e_1, \cdot(g,b) = e_2, \cdot(g,c) = e_7, \cdot(f,c) = e_4, \cdot(h,e_4) = e_5, \cdot(g,a) = e_6, \cdot(e_5,e_6) = e_7, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9, \cdot(h,e_6) = e_5, \cdot(e_8,e_6) = e_9\}$

Now, we could ask whether g(a) = h(d,d) holds. After curryfing and flattening, the question is whether $e_6 = e_9$, which is false. On the other hand, we can check that g(c) = h(f(b),d) because it is equivalent to $e_3 = e_9$, which is obviously true.

$$\begin{bmatrix} Pending \end{bmatrix} \begin{bmatrix} c = \{ \cdot(g,c) = e_3, \cdot(f,c) = e_4, \cdot(g,b) = e_2 \} \\ e_6 = \{ \cdot(e_5,e_6) = e_7, \cdot(h,e_6) = e_5, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9 \} \\ e_1 = e_2 = e_3 = e_9 = \emptyset \\ e_5 = \{ \cdot(e_5,e_6) = e_7 \} \\ e_8 = \{ \cdot(e_8,d) = e_9 \} \end{bmatrix}$$

Constant	a	b	С	d	e_1	e_2	e_{3}	e_4	e_5	e_6	e_7	e_8	e_{9}
Representative	a	c	c	e_6	e_7	e_7	e_7	e_6	e_8	e_6	e_7	e_8	e_7

Lookup: $\{\cdot(f,a) = e_1, \cdot(g,b) = e_2, \cdot(g,c) = e_7, \cdot(f,c) = e_4, \cdot(h,e_4) = e_5, \cdot(g,a) = e_6, \cdot(e_5,e_6) = e_7, \cdot(h,d) = e_8, \cdot(e_8,d) = e_9, \cdot(h,e_6) = e_5, \cdot(e_8,e_6) = e_9\}$

Analysis of the algorithm

 $O(n \log n)$ time and linear space:

- assume k different constants (usually, $k \ll n$)
- each ct changes representative at most log k times
- maintenance *rep* and *ClassList*: *k* log *k*
- maintentance *Lookup* and *UseList*: 2n log k

Correctness:

- Let *RepresentativeE* be the non-trivial eqs a = a' and $\cdot(a', b') = c'$ where a, b and c cts in E_0 and c is Lookup(a', b').
- Note: final *RepresentativeE* is the resulting closure (a convergent TRS)
- Key invariant: $(RepresentativeE \cup Pending)^* = E_0^*$

Integer Offsets

- Bryant et al. add interpreted succ and pred symbols, extending EUF to CLU logic.
- The syntax is now the following one:

 $formula :== true | false | predicateSymbol(term, \cdots, term) \\ | \neg formula | (formula \lor formula) | (formula \land formula) \\ | (term = term)$

$$int_term :== functionSymbol(int_term, \cdots, int_term) \\ | ite(formula, int_term, int_term) \\ succ(int_term) | pred(int_term)$$

Note that all non-boolean terms are interpreted over the integers

Integer Offsets (contd.)

- write (sub)terms $\underbrace{succ(\dots succ(t) \dots)}_{k \text{ times}}$ as t + ksame with negative k for $\underbrace{pred(\dots pred(t) \dots)}_{k \text{ times}}$
- Example: $f(a) = c \land f(b+1) = c+1 \land a-1 = b$ Note that now E_0 can be unsatisfiable.

a + 2 = b - 3 b - 5 = c + 7 c = d - 4 a = b - 5 b = c + 12c = d - 4

An infinite number of classes, the ones of $\ldots, b-1, b, b+1, \ldots$ can be represented by: { $\mathbf{b} = a+5 = c+12 = d+8$ }

Integer Offsets (contd.)

- Can assume input equations of the form a = b + k or of the form $\cdot(a, b + k_b) = c + k_c$ (not hard to see)
- Pending now contains eqs like a = b + k
- Representative(a) returns pair (b,k) such that b = a+k
- Similarly for Class lists, Lookup table, and Use lists.
- Obtain algorithm with same complexity!

BUT

If also atoms s > t are allowed in (positive conjunction) input then satisfiability becomes NP-hard (reduce k-coloring, see paper for details).

CC: our algorithm with offsets

While $Pendinq \neq \emptyset$ Do remove a = b + k with representative $a' = b' + k_{b'}$ from *Pending* If $a' \neq b'$ and, wlog., |ClassList(a')| < |ClassList(b')| Then For each $c + k_c$ in ClassList(a') Do set rep(c) to $(b', k_c - k_{b'})$ and add it to ClassList(b')**EndFor** For each $(c, d+k_d) = e+k_e$ in UseList(a') Do If $Lookup(c', r(d+k_d))$ is $f+k_f$ and $r(f+k_f) \neq r(e+k_e)$ Then add $e = f + (k_f - k_e)$ to Pending EndIf set $Lookup(c', r(d+k_d))$ to $r(e+k_e)$ add $(c, d+k_d) = e+k_e$ to UseList(b')EndFor ElseIf a' = b' and $k_{b'} \neq 0$ Then return unsatisfiable EndIf EndWhile

CC-Ineq is NP-hard

Given a graph G = (V, E), where $V = \{a_1, \ldots, a_n\}$ and $E = \{(b_1, b'_1), \ldots, (b_m, b'_m)\}$ and an integer k, the following CC-Ineq formula is satisfiable if and only if G is k-colorable: $G(c + 1, c + 1) = G(c + 2, c + 2) = \ldots = G(c + k, c + k) = true$

c + k + 1	>	$f(a_1)$	>	C	true	>	$G(f(b_1), f(b'_1))$
c + k + 1	>	$f(a_{2})$	>	С	true	>	$G(f(b_2), f(b_2^{\bar{\prime}}))$
÷		÷		÷	÷		:
c + k + 1	>	$f(a_n)$	>	c	true	>	$G(f(b_m), f(b'_m))$

Intuitively, f represents the colour of each vertex (k possibilities), and G is used to express that no two adjacent vertices will have the same colour.