Congruence Closure and Extensions

Albert Oliveras

UPC, Barcelona

Joint work with Robert Nieuwenhuis

The University of Iowa
March 2005

Overview of this talk

1. Formulation of the problem
2. Union-Find

- Abstract Union-Find
- The Collapse rule
- The Compose rule
- Choosing a good ordering

3. Congruence closure (CC)

- Abstract Congruence Closure
- Initial transformations
- General idea
- Data structures and algorithm
- Running example
- Analysis of the algorithm

4. CC with integer offsets

Formulation of the problems

INPUT: set of ground equations E and $s=t$.
QUESTION: Is $E=s=t$ true?

- Converting E into a convergent TRS will give us a decision procedure.
- Tiwari's Abstract Congruence Closure gives us a solution.
- Our goal: obtention of efficient strategies in practice.

Abstract Union-Find

- Signature $\Sigma=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ (only constants).
- Let \succ a total ordering on constants, $c_{1} \succ c_{2} \succ \ldots \succ c_{n}$.

$$
\begin{array}{|c|}
\hline \text { Orient } \frac{c=d, E}{c \rightarrow d, E} \text { if } c \succ d \\
\hline \text { Simplify } \frac{c=d, c \rightarrow d^{\prime}, E}{d^{\prime}=d, c \rightarrow d^{\prime}, E} \\
\hline \text { Collapse } \frac{c \rightarrow d^{\prime}, c \rightarrow d, E}{c \rightarrow d^{\prime}, d \rightarrow d^{\prime}, E} \text { if } d \succ d^{\prime} \\
\hline \text { Compose } \frac{c \rightarrow d, d \rightarrow d^{\prime}, E}{c \rightarrow d^{\prime}, d \rightarrow d^{\prime}, E} \\
\hline
\end{array}
$$

- Any strategy will give us a convergent TRS, but, which is the most efficient one?

Abstract Union-Find(cntd.)

- Any strategy orienting all equations gives us a terminating TRS.
- Concerning confluence, which situations have to be avoided? (remember critical pair criterion)
- Our strategy: avoid situations where Collapse applies.
- Working with 4 rules instead of 5 is a reasonable way to make the implementation more efficient.

Avoiding applications of Collapse

- Which rules could transform a state in which Collapse does not apply into one in which it does?

$$
\begin{array}{|c|}
\hline \text { Orient } \frac{c=d, E}{c \rightarrow d, E} \text { if } c \succ d \\
\hline \text { Simplify } \frac{c=d, c \rightarrow d^{\prime}, E}{d^{\prime}=d, c \rightarrow d^{\prime}, E} \\
\hline \text { Collapse } \frac{c \rightarrow d^{\prime}, c \rightarrow d, E}{c \rightarrow d^{\prime}, d \rightarrow d^{\prime}, E} \text { if } d \succ d^{\prime} \\
\hline \text { Compose } \frac{c \rightarrow d, d \rightarrow d^{\prime}, E}{c \rightarrow d^{\prime}, d \rightarrow d^{\prime}, E} \\
\hline
\end{array}
$$

Only Orient and Compose (assuming we never apply Collapse).

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\left\{c \rightarrow d, c \rightarrow d^{\prime}, E\right\}$ with $d \succ d^{\prime}$.
- Consider the case in which $c \rightarrow d^{\prime}$ has just been generated (by Orient or Compose).
- Case 1:

$$
\text { Orient } \frac{c=d^{\prime},\left\{c \rightarrow d, E^{\prime}\right\}}{c \rightarrow d^{\prime},\left\{c \rightarrow d, E^{\prime}\right\}}
$$

but note that here Simplify also applies

$$
\text { Simplify } \frac{c=d^{\prime}, c \rightarrow d, E^{\prime}}{d=d^{\prime}, c \rightarrow d, E^{\prime}}
$$

and now Collapse is not applicable.
SOLUTION: Simplify has priority over Orient.

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\left\{c \rightarrow d, c \rightarrow d^{\prime}, E\right\}$ with $d>d^{\prime}$.
- Consider the case in which $c \rightarrow d^{\prime}$ has just been generated (by Orient or Compose).
- Case 2:

$$
\text { Compose } \frac{c \rightarrow e, e \rightarrow d^{\prime},\left\{c \rightarrow d, E^{\prime}\right\}}{c \rightarrow d^{\prime}, e \rightarrow d^{\prime},\left\{c \rightarrow d, E^{\prime}\right\}}
$$

but note that e has to be d (why?) Thus, we have

$$
\text { Compose } \frac{c \rightarrow d, d \rightarrow d^{\prime}, E^{\prime}}{c \rightarrow d^{\prime}, d \rightarrow d^{\prime}, E^{\prime}}
$$

and in this new state Collapse does not apply.

Avoiding applications of Collapse (cntd.)

- Assume we move from a state in which Collapse doesn't apply to one in which it does. The new state has to be of the form $\left\{c \rightarrow d, c \rightarrow d^{\prime}, E\right\}$ with $d>d^{\prime}$.
- The case in which $c \rightarrow d^{\prime}$ has just been generated (by Orient or Compose) can be avoided by exhaustively applying Simplify before Orient.
- The case in which $c \rightarrow d$ has just been generated (by Orient or Compose) is similar.
- Using this strategy, we can get rid of Collapse, because it will never be applicable.

The Compose rule

- Remember: our goal is to obtain a convergent (confluent and terminating) TRS.
- Termination is ensured using any strategy.
- We have seen that if Simplify is exhaustively applied before Orient, all the intermediate states will give us confluent TRS.
- CONCLUSION: Compose is not necessary. So, let's forget about it (for the moment).

Choosing a good ordering

- According to the previous slides, our procedure will run the following loop until there is no unoriented equation:

1. Pick an equation $c=d$.
2. Apply Simplify exhaustively and get $c^{\prime}=d^{\prime}$.
3. If c^{\prime} is d^{\prime}, Delete. Otherwise, Orient it giving $c^{\prime} \rightarrow d^{\prime}$ if

$$
c^{\prime}>d^{\prime}
$$

- Complexity: $O(n L)$, being n is the number of equations and L the number of possible applications of Simplify to an equation.
- Instead of L, we can compute the maximal number of times a constant a can be rewritten. That is, the maximum length of a path of the form $a \rightarrow a_{1} \rightarrow \ldots \rightarrow a_{n}$.
- GOAL: minimize the length of such a path

Choosing a good ordering (contd.)

- Given the ordering $a_{1} \succ a_{2} \succ \ldots \succ a_{n}$, and the equations $\left\{a_{1}=a_{2}, a_{2}=a_{3}, \ldots, a_{n-1}=a_{n}\right\}$ we can get a path of length $n: a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n}$ (worst case!).
- Improvement: choose the ordering on the fly.
- Given a simplified equation $c=d$ (c and d are normal forms with respect to the TRS defined so far), its orientation will be $c \rightarrow d$ if $|c| \leq|d|$, being $|c|$ (resp. $|d|)$ the number of constants in the equivalence class of c (resp. d).
- Since for each oriented rule $c \rightarrow d$, the class of $|c|$ at least doubled its size, any path has length at most $\operatorname{Ig} n$, being n the number of constants.
- With these ordering restrictions, the complexity of the procedure is $O(m \lg n)$, being m the number of equations and n the number of constants.

Using Compose to improve the efficiency

- Imagine we pick the equation $c_{0}=d$. We first have to Simplify it exhaustively: $c_{0} \rightarrow c 1 \rightarrow \ldots \rightarrow c_{k}$, being c_{k} its normal form.
- Later, we may pick another equation $c_{0}=e$, and c_{0} will have to be normalized using at least the previous k Simplify steps. Redundant work!!!
- SOLUTION: the first time we normalize c, we can at the same time apply Compose (compress the path) and get the oriented equations $c_{i} \rightarrow c_{k}$ for i in $0 \ldots k-1$.
- The next time we need to normalize c we will perform k steps in a single one, using the rule $c \rightarrow c_{k}$.
- This optimization, known as path-compression, allows one to run the procedure in time $O(m \alpha(m, n))$, where $\alpha(m, n)$ is a VERY slow-growing function.

Abstract Congruence Closure

INPUT: set of ground equations E and $s=t$.
QUESTION: Is $E \models s=t$ true?

- Equations in E and $s=t$ build over signature Σ consisting only of fixed-arity function symbols and constants.
- Rules are the ones of Abstract Union-Find plus:

Extend $\frac{s\left[f\left(c_{1}, \ldots, c_{k}\right)\right]=t, E}{s[c]=t, f\left(c_{1}, \ldots, c_{k}\right) \rightarrow c, E}$ if $f \in \Sigma, c \in K$
Simplify $\frac{s[u]=t, u \rightarrow c, E}{s[c]=t, u \rightarrow c, E}$
Superpose $\frac{f\left(c_{1}, \ldots, c_{k}\right)=c, f\left(c_{1}, \ldots, c_{k}\right)=d, E}{c=d, f\left(c_{1}, \ldots, c_{k}\right)=c, E}$
Collapse $\frac{f(\ldots, c, \ldots) \rightarrow d, c \rightarrow c^{\prime}, E}{f\left(\ldots, c^{\prime}, \ldots\right) \rightarrow d, c \rightarrow c^{\prime}, E}$

Initial transformations

First of all, two initial transformations are performed:

1. Curryfy (like in the implementation of FP):

$$
\frac{s\left[f\left(c_{1}, \ldots, c_{n}\right)\right]=t, E}{s[\underbrace{(\cdot(\ldots \cdot(}_{n-1 \text { times }}\left(f, c_{1}\right), c_{2}), \ldots, c_{n})]=t, E}
$$

- After Curryfying: only one binary symbol "." and constants.
- Example: Curryfying $f(a, g(b), c)$ gives $\cdot(\cdot(\cdot(f, a), \cdot(g, b)), c)$

2. Flatten(Extend + Simplify):

- Allows one to assume: terms of depth ≤ 1
- Introduces a linear number of new constants
- Example: Flattening $\{\cdot(\cdot(\cdot(f, a), \cdot(g, b)), c)=i\}$ gives

$$
\{\cdot(f, a) \rightarrow d, \quad \cdot(g, b) \rightarrow e, \quad \cdot(d, e) \rightarrow h, \quad \cdot(h, c)=i\}
$$

Reformulation of the problem

Now the CC problem is: $E \models a=b$? (a, b, c, d, e cts.) where equations in E are of the form $\cdot(c, d)=e$ or $c=d$.

The rules to be applied are the ones of the Abstract Union-Find plus:

Superpose $\frac{\left(c_{1}, c_{2}\right) \rightarrow c, \cdot\left(c_{1}, c_{2}\right) \rightarrow d, E}{c=d, \cdot\left(c_{1}, c_{2}\right) \rightarrow c, E}$		
$\mathrm{Collapse}_{1}$	$\cdot\left(c_{1}, c_{2}\right) \rightarrow d, c_{1} \rightarrow c_{1}^{\prime}, E$ $\cdot\left(c_{1}^{\prime}, c_{2}\right) \rightarrow d, c_{1} \rightarrow c_{1}^{\prime}, E$	Collapse $2 \underset{2}{ } \frac{\left(c_{1}, c_{2}\right) \rightarrow d, c_{2} \rightarrow c_{2}^{\prime}, E}{\cdot\left(c_{1}, c_{2}^{\prime}\right) \rightarrow d, c_{2} \rightarrow c_{2}^{\prime}, E}$
Compose $\frac{\cdot\left(c_{1}, c_{2}\right) \rightarrow c, c \rightarrow d, E}{\cdot\left(c_{1}, c_{2}\right) \rightarrow d, c \rightarrow d, E}$		

Ideas behind the algorithm

- Due to the flattening process each term can now be identified with a constant. The question whether $s=t$ can be reduced to the question $c_{s}=c_{t}$ for certain constants c_{s}, c_{t}.
- Therefore, our goal is to detect which new equalities between constants arise due to the function symbols.
- In the rules, these new equalities are detected by Superpose.
- IDEA: we will need a Union-Find data structure and some procedure to detect these new equalities between constants.

Congruence closure: our data structures

1. Pending unions: a list of pairs of cts yet to be merged.
2. Representative table: array indexed by constants, with for each constant c its current representative rep (c).
3. Class lists: for each repres., the list of all cts in its class.
4. Lookup table: for each input term $\cdot(a, b)$, Lookup $(\operatorname{rep}(a), \operatorname{rep}(b))$ returns in constant time a constant c such that $\cdot(a, b)=c$ (\perp if there is none).
5. Use lists: for each representative a, the list of input equations $\cdot(b, c)=d$ such that a is $\operatorname{rep}(b)$ or $\operatorname{rep}(c)$ or both.

Congruence closure: our algorithm

```
While Pending \(\neq \emptyset\) Do
                Notation: \(c^{\prime}\) means rep (c)
    remove \(a=b\) from Pending
    If \(a^{\prime} \neq b^{\prime}\) and, wlog., \(\left|\operatorname{ClassList}\left(a^{\prime}\right)\right| \leq\left|\operatorname{ClassList}\left(b^{\prime}\right)\right|\) Then
        For each \(c\) in ClassList ( \(a^{\prime}\) ) Do
            set \(\operatorname{rep}(c)\) to \(b^{\prime}\) and add \(c\) to ClassList \(\left(b^{\prime}\right)\)
        EndFor
        For each \(\cdot(c, d)=e\) in UseList \(\left(a^{\prime}\right)\) Do
        If Lookup \(\left(c^{\prime}, d^{\prime}\right)\) is some \(f\) and \(f^{\prime} \neq e^{\prime}\) Then
                add \(e^{\prime}=f^{\prime}\) to Pending
        EndIf
        set \(\operatorname{Lookup}\left(c^{\prime}, d^{\prime}\right)\) to \(e^{\prime}\)
        add \(\cdot(c, d)=e\) to \(\operatorname{UseList}\left(b^{\prime}\right)\)
        EndFor
    EndIf
EndWhile
```


Running example

$$
\left.\begin{array}{rl}
f(a) & =g(b) \\
g(c) & =h(f(c), g(a)) \\
b & =c \\
f(c) & =g(a) \\
h(d, d) & =g(b) \\
g(a) & =d
\end{array}\right\} \Longrightarrow\left[\begin{array}{r}
\cdot(f, a)=e_{1} \\
\cdot(g, b)=e_{2} \\
\cdot(g, c)=e_{3} \\
\cdot(f, c)=e_{4} \\
\cdot\left(h, e_{4}\right)=e_{5} \\
\cdot(g, a)=e_{6} \\
\cdot\left(e_{5}, e_{6}\right)=e_{7} \\
\cdot(h, d)=e_{8} \\
\cdot\left(e_{8}, d\right)=e_{9}
\end{array}\right]+\left[\begin{array}{l}
e_{1}=e_{2} \\
e_{3}=e_{7} \\
b=c \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]
$$

And we initialize Lookup table:
$\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot\left(h, e_{4}\right)=\right.$ $\left.e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\}$

Running example (contd.)

$$
\left.\begin{array}{rl}
f(a) & =g(b) \\
g(c) & =h(f(c), g(a)) \\
b & =c \\
f(c) & =g(a) \\
h(d, d) & =g(b) \\
g(a) & =d
\end{array}\right\} \Longrightarrow\left[\begin{array}{r}
\cdot(f, a)=e_{1} \\
\cdot(g, b)=e_{2} \\
\cdot(g, c)=e_{3} \\
\cdot(f, c)=e_{4} \\
\cdot\left(h, e_{4}\right)=e_{5} \\
\cdot(g, a)=e_{6} \\
\cdot\left(e_{5}, e_{6}\right)=e_{7} \\
\cdot(h, d)=e_{8} \\
\cdot\left(e_{8}, d\right)=e_{9}
\end{array}\right]+\left[\begin{array}{l}
e_{1}=e_{2} \\
e_{3}=e_{7} \\
b=c \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]
$$

Similarly, initialization for UseList is:

$$
\begin{aligned}
& \operatorname{UseList}(a)=\left\{\cdot(f, a)=e_{1}, \cdot(g, a)=e_{6}\right\} \\
& \operatorname{UseList}(b)=\left\{\cdot(g, b)=e_{2}\right\} \\
& \operatorname{UseList}(c)=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\}
\end{aligned}
$$

Running example (contd.)

$$
\left[\right]\left[\begin{array}{ll}
& \\
b=\left\{\cdot(g, b)=e_{2}\right\} & e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$ $e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ eg $\}$

Running example (contd.)

In normal form: $e_{1} \rightarrow e_{2}$.
$\left[\begin{array}{r}\text { Pending } \\ e_{1}=e_{2} \\ e_{3}= \\ b= \\ b= \\ e_{4}= \\ e_{9}=e_{2} \\ e_{6}=d\end{array}\right]\left[\begin{array}{ll}l=\left\{\cdot(g, b)=e_{2}\right\} & \\ b=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\ c=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\ d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\ e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}\end{array}\right]$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{1} \rightarrow e_{2}$. We have $\operatorname{UseList}\left(e_{1}\right)=\emptyset$.

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	b	c	d	e_{2}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{3} \rightarrow e_{7}$.

$$
\left[\right]\left[\begin{array}{ll}
& e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
b=\left\{\cdot(g, b)=e_{2}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e^{2}=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\
e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	b	c	d	e_{2}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{3} \rightarrow e_{7}$. We have $\operatorname{UseList}\left(e_{3}\right)=\emptyset$.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{3}=e_{7} \\
b=c \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]\left[\begin{array}{ll}
b=\left\{\cdot(g, b)=e_{2}\right\} & e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	b	c	d	e_{2}	e_{2}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $b \rightarrow c$.

$$
\left[\begin{array}{c}
\text { Pending } \\
b=c \\
e_{4}= \\
e_{9}= \\
e_{9}=e_{2} \\
e_{6}=
\end{array}\right]\left[\begin{array}{ll}
b=\left\{\cdot(g, b)=e_{2}\right\} & e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{2}	e_{2}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $b \rightarrow c$. Let's treat $\cdot(g, b)=e_{2}$. Since $\operatorname{Lookup}\left(g^{\prime}, b^{\prime}\right)=\operatorname{Lookup}(g, c)=e_{3}$ and $e_{3}^{\prime} \neq e_{2}^{\prime}$, we add $e_{7}=e_{2}$ to Pending.

$$
\left[\begin{array}{c}
\text { Pending } \\
b=c \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]\left[\begin{array}{ll}
\quad \text { UseList } & \\
b=\left\{\cdot(g, b)=e_{2}\right\} & e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{2}	e_{2}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{3}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $b \rightarrow c$. Let's treat $\cdot(g, b)=e_{2}$. Since $\operatorname{Lookup}\left(g^{\prime}, b^{\prime}\right)=\operatorname{Lookup}(g, c)=e_{3}$ and $e_{3}^{\prime} \neq e_{2}^{\prime}$, we add $e_{7}=e_{2}$ to Pending. Now, $\operatorname{Lookup}(g, c)=e_{7}$ and add $\cdot(g, b)=e_{2}$ to UseList(c).

$$
\left[\right]\left[\begin{array}{cl}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8} \cdot \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{2}	e_{2}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{2} \rightarrow e_{7}$.

$$
\left[\right]\left[\begin{array}{cl}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$ $e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{2} \rightarrow e_{7}$. Again $\operatorname{UseList}\left(e_{2}\right)=\emptyset$.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{7}=e_{2} \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]\left[\begin{array}{cl}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8} \cdot \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$ $e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{4} \rightarrow e_{6}$.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{4}=e_{6} \\
e_{9}= \\
e_{2} \\
e_{6}=
\end{array}\right]\left[\begin{array}{cl}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$ $e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{4} \rightarrow e_{6}$. Let's treat $\cdot\left(h, e_{4}\right)=e_{5}$. Since $\operatorname{Lookup}\left(h^{\prime}, e_{4}^{\prime}\right)=\operatorname{Lookup}\left(h, e_{6}\right)=\emptyset$, just add $\operatorname{Lookup}\left(h, e_{6}\right)=e_{5}$ to Lookup and $\cdot\left(h, e_{4}\right)$ to $\operatorname{UseList}\left(e_{6}\right)$.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]\left[\begin{array}{ll}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{4}=\left\{\cdot\left(h, e_{4}\right)=e_{5}\right\} & e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}\right\}$

Running example (contd.)

In normal form: $e_{4} \rightarrow e_{6}$. Let's treat $\cdot\left(h, e_{4}\right)=e_{5}$. Since $\operatorname{Lookup}\left(h^{\prime}, e_{4}^{\prime}\right)=\operatorname{Lookup}\left(h, e_{6}\right)=\emptyset$, just add $\operatorname{Lookup}\left(h, e_{6}\right)=e_{5}$ to Lookup and $\cdot\left(h, e_{4}\right)$ to $\operatorname{UseList}\left(e_{6}\right)$.

$$
\left[\begin{array}{l}
\text { Pending } \\
e_{4}=e_{6} \\
e_{9}=e_{2} \\
e_{6}=e^{2}
\end{array}\right]\left[\begin{array}{l}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}\right\} \\
e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\
e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$
$\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}\right\}$

Running example (contd.)

In normal form: $e_{9} \rightarrow e_{7}$ (and not the other way around). Again $U \operatorname{seList}\left(e_{9}\right)=\emptyset$.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{9}=e_{2} \\
e_{6}=d
\end{array}\right]\left[\begin{array}{c}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\
e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\}
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	d	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$
$\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}\right\}$

Running example (contd.)

In normal form: $d \rightarrow e_{6}$ (and not the other way around).

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{6}=d
\end{array}\right]\left[\begin{array}{ll}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}\right\} & e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\} \\
d=\left\{\cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} & e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} &
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}\right\}$

Running example (contd.)

In normal form: $d \rightarrow e_{6}$ (and not the other way around). Let's treat $\cdot(h, d)=e_{8}$. Since $\operatorname{Lookup}\left(h^{\prime}, d^{\prime}\right)=\operatorname{Lookup}\left(h, e_{6}\right)=e_{5}$ and $e_{8}^{\prime} \neq e_{5}^{\prime}$, add $e_{5}=e_{8}$ to Pending. We also add $\cdot(h, d)=e_{8}$ to UseList (e_{6}).

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{6}=d
\end{array}\right]\left[\begin{array}{l}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}\right\} \\
d=\left\{\cdot(h, d)=e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\}\right. \\
d
\end{array} e_{1}=e_{2}=e_{3}=e_{9}=\emptyset\right] .
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$
$\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}\right\}$

Running example (contd.)

In normal form: $d \rightarrow e_{6}$ (and not the other way around). Let's treat $\cdot(h, d)=e_{8}$. Since $\operatorname{Lookup}\left(h^{\prime}, d^{\prime}\right)=\operatorname{Lookup}\left(h, e_{6}\right)=e_{5}$ and $e_{8}^{\prime} \neq e_{5}^{\prime}$, add $e_{5}=e_{8}$ to Pending. We also add $\cdot(h, d)=e_{8}$ to UseList (e_{6}).

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{5}=e_{8}
\end{array}\right]\left[\begin{array}{c}
c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot(h, d)=e_{8}\right\} \\
d=\left\{\cdot(h, d)=e_{8}\right\} \\
e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \\
e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}=\emptyset\right.
\end{array}\right]
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}\right\}$

Running example (contd.)

In normal form: $d \rightarrow e_{6}$ (and not the other way around). Let's treat $\cdot(h, d)=e_{8}$. Since $\operatorname{Lookup}\left(h^{\prime}, d^{\prime}\right)=\operatorname{Lookup}\left(h, e_{6}\right)=e_{5}$ and $e_{8}^{\prime} \neq e_{5}^{\prime}$, add $e_{5}=e_{8}$ to Pending. We also add $\cdot(h, d)=e_{8}$ to UseList (e_{6}).
$\left[\begin{array}{c}\text { Pending } \\ e_{5}=e_{8}\end{array}\right]\left[\begin{array}{c}c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4} \cdot(g, b)=e_{2}\right\} \\ e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\ e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\ e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \quad e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\}\end{array}\right]$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{5}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$
$\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot\left(e_{8}, e_{6}\right)=e_{9}\right\}$

Running example (contd.)

In normal form: $e_{5} \rightarrow e_{8}$. Let's treat $\cdot\left(e_{5}, e_{6}\right)=e_{7}$. Since
$\operatorname{Lookup}\left(e_{5}^{\prime}, e_{6}^{\prime}\right)=\operatorname{Lookup}\left(e_{8}, e_{6}\right)=e_{9}$, we should add $e_{7}^{\prime}=e_{9}^{\prime}$, but it is discarded because it already holds.

$$
\left[\begin{array}{c}
\text { Pending } \\
e_{5}=e_{8}
\end{array}\right]\left[\begin{array}{c}
\text { UseList } \\
c=\left\{\cdot(g, c)=e_{3} \cdot \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\
e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\
e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\
e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \quad e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\}
\end{array}\right.
$$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{8}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$ $\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot\left(e_{8}, e_{6}\right)=e_{9}\right\}$

Running example (contd.)

Now, we could ask whether $g(a)=h(d, d)$ holds. After curryfing and flattening, the question is whether $e_{6}=e_{9}$, which is false. On the other hand, we can check that $g(c)=h(f(b), d)$ because it is equivalent to $e_{3}=e_{9}$, which is obviously true.
$[$ Pending $]\left[\begin{array}{c}\text { UseList } \\ c=\left\{\cdot(g, c)=e_{3}, \cdot(f, c)=e_{4}, \cdot(g, b)=e_{2}\right\} \\ e_{6}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=e_{9}\right\} \\ e_{1}=e_{2}=e_{3}=e_{9}=\emptyset \\ e_{5}=\left\{\cdot\left(e_{5}, e_{6}\right)=e_{7}\right\} \quad e_{8}=\left\{\cdot\left(e_{8}, d\right)=e_{9}\right\}\end{array}\right]$

Constant	a	b	c	d	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}
Representative	a	c	c	e_{6}	e_{7}	e_{7}	e_{7}	e_{6}	e_{8}	e_{6}	e_{7}	e_{8}	e_{7}

Lookup: $\left\{\cdot(f, a)=e_{1}, \cdot(g, b)=e_{2}, \cdot(g, c)=e_{7}, \cdot(f, c)=\right.$
$e_{4}, \cdot\left(h, e_{4}\right)=e_{5}, \cdot(g, a)=e_{6}, \cdot\left(e_{5}, e_{6}\right)=e_{7}, \cdot(h, d)=e_{8}, \cdot\left(e_{8}, d\right)=$
$\left.e_{9}, \cdot\left(h, e_{6}\right)=e_{5}, \cdot\left(e_{8}, e_{6}\right)=e_{9}\right\}$

Analysis of the algorithm

$O(n \log n)$ time and linear space:

- assume k different constants (usually, $k \ll n$)
- each ct changes representative at most $\log k$ times
- maintenance rep and ClassList: $k \log k$
- maintentance Lookup and UseList: $2 n \log k$

Correctness:

- Let RepresentativeE be the non-trivial eqs $a=a^{\prime}$ and $\cdot\left(a^{\prime}, b^{\prime}\right)=c^{\prime}$ where a, b and c cts in E_{0} and c is $\operatorname{Lookup}\left(a^{\prime}, b^{\prime}\right)$.
- Note: final RepresentativeE is the resulting closure (a convergent TRS)
- Key invariant: (Representative $E \cup$ Pending) ${ }^{*}=E_{0}^{*}$

Integer Offsets

- Bryant et al. add interpreted succ and pred symbols, extending EUF to CLU logic.
- The syntax is now the following one:

$$
\left.\begin{array}{rl}
\text { formula }:== & \text { true } \mid \text { false } \mid \text { predicateSymbol }(\text { term }, \cdots, \text { term }) \\
& \mid \neg \text { formula } \mid(\text { formula } \vee \text { formula }) \mid(\text { formula } \wedge \text { formula }) \\
& \mid \text { term }=\text { term })
\end{array}\right\}
$$

- Note that all non-boolean terms are interpreted over the integers

Integer Offsets (contd.)

- write (sub)terms $\underbrace{\operatorname{succ}(\ldots \operatorname{succ}}_{k \text { times }}(t) \ldots)$ as $t+k$ same with negative k for $\underbrace{\operatorname{pred}(\ldots \text { pred }}_{k \text { times }}(t) \ldots)$
- Example: $f(a)=c \wedge f(b+1)=c+1 \wedge a-1=b$

Note that now E_{0} can be unsatisfiable.

$$
\begin{aligned}
a+2 & =b-3 \\
b-5 & =c+7 \\
c & =d-4
\end{aligned} \quad \text { is } \quad \begin{aligned}
& a=b-5 \\
& b=c+12 \\
& c=d-4
\end{aligned}
$$

An infinite number of classes, the ones of $\ldots, b-1, b, b+1, \ldots$ can be represented by: $\{\mathrm{b}=a+5=c+12=d+8\}$

Integer Offsets (contd.)

- Can assume input equations of the form $a=b+k$ or of the form $\cdot\left(a, b+k_{b}\right)=c+k_{c} \quad$ (not hard to see)
- Pending now contains eqs like $a=b+k$
- Representative(a) returns pair (b, k) such that $b=a+k$
- Similarly for Class lists, Lookup table, and Use lists.
- Obtain algorithm with same complexity!

BUT

If also atoms $s>t$ are allowed in (positive conjunction) input then satisfiability becomes NP-hard (reduce k-coloring, see paper for details).

CC: our algorithm with offsets

```
While Pending }\not=\emptyset\mathrm{ Do
    remove }a=b+k\mathrm{ with representative }\mp@subsup{a}{}{\prime}=\mp@subsup{b}{}{\prime}+\mp@subsup{k}{\mp@subsup{b}{}{\prime}}{\prime}\mathrm{ from Pending
    If }\mp@subsup{a}{}{\prime}\not=\mp@subsup{b}{}{\prime}\mathrm{ and, wlog., |ClassList( (a)
    For each c+ kc in ClassList( ( a') Do
        set rep(c) to ( }\mp@subsup{b}{}{\prime},\mp@subsup{k}{c}{}-\mp@subsup{k}{\mp@subsup{b}{}{\prime}}{}\mathrm{ ) and add it to ClassList(b}
        EndFor
        For each \cdot(c,d+k,k})=e+\mp@subsup{k}{e}{}\mathrm{ in UseList(a') Do
        If Lookup (c',r(d+\mp@subsup{k}{d}{})) is f+\mp@subsup{k}{f}{}\mathrm{ and }r(f+\mp@subsup{k}{f}{})\not=r(e+\mp@subsup{k}{e}{})\mathrm{ Then}
            add e = f+(kf}-\mp@subsup{k}{e}{})\mathrm{ to Pending
        EndIf
        set Lookup ( }\mp@subsup{c}{}{\prime},r(d+\mp@subsup{k}{d}{})\mathrm{ to }r(e+\mp@subsup{k}{e}{}
        add \cdot(c,d+\mp@subsup{k}{d}{})=e+\mp@subsup{k}{e}{}\mathrm{ to UseList(b')}
    EndFor
    ElseIf }\mp@subsup{a}{}{\prime}=\mp@subsup{b}{}{\prime}\mathrm{ and }\mp@subsup{k}{\mp@subsup{b}{}{\prime}}{}\not=0\mathrm{ Then return unsatisfiable
    EndIf
EndWhile
```


CC-Ineq is NP-hard

Given a graph $G=(V, E)$, where $V=\left\{a_{1}, \ldots, a_{n}\right\}$ and $E=\left\{\left(b_{1}, b_{1}^{\prime}\right), \ldots,\left(b_{m}, b_{m}^{\prime}\right)\right\}$ and an integer k, the following CC-Ineq formula is satisfiable if and only if G is k-colorable:

$$
\begin{aligned}
& G(c+1, c+1)=G(c+2, c+2)=\ldots=G(c+k, c+k)=\text { true } \\
& c+k+1>f\left(a_{1}\right)>c \quad \text { true }>G\left(f\left(b_{1}\right), f\left(b_{1}^{\prime}\right)\right) \\
& c+k+1>f\left(a_{2}\right)>c \quad \text { true }>G\left(f\left(b_{2}\right), f\left(b_{2}^{\prime}\right)\right) \\
& c+k+1>f\left(a_{n}\right)>c \quad \text { true }>G\left(f\left(b_{m}\right), f\left(b_{m}^{\prime}\right)\right)
\end{aligned}
$$

Intuitively, f represents the colour of each vertex (k possibilities), and G is used to express that no two adjacent vertices will have the same colour.

