
Congruence Closure and
Extensions

Albert Oliveras

UPC, Barcelona

Joint work with Robert Nieuwenhuis

The University of Iowa

March 2005

1

Overview of this talk

1. Formulation of the problem

2. Union-Find

Abstract Union-Find

The Collapse rule

The Compose rule

Choosing a good ordering

3. Congruence closure (CC)

Abstract Congruence Closure

Initial transformations

General idea

Data structures and algorithm

Running example

Analysis of the algorithm

4. CC with integer offsets

2

Formulation of the problems

INPUT: set of ground equations E and s=t.

QUESTION: Is E |= s=t true?

Converting E into a convergent TRS will give us a decision

procedure.

Tiwari’s Abstract Congruence Closure gives us a solution.

Our goal: obtention of efficient strategies in practice.

3

Abstract Union-Find

Signature Σ = {c1, c2, . . . , cn} (only constants).

Let � a total ordering on constants, c1 � c2 � . . . � cn.

Orient
c = d, E

c → d, E
if c � d Delete

c = c, E

E

Simplify
c = d, c → d′, E

d′ = d, c → d′, E

Collapse
c → d′, c → d, E

c → d′, d → d′, E
if d � d′

Compose
c → d, d → d′, E

c → d′, d → d′, E

Any strategy will give us a convergent TRS, but, which is

the most efficient one?

4

Abstract Union-Find(cntd.)

Any strategy orienting all equations gives us a terminating

TRS.

Concerning confluence, which situations have to be

avoided? (remember critical pair criterion)

Our strategy: avoid situations where Collapse applies.

Working with 4 rules instead of 5 is a reasonable way to

make the implementation more efficient.

5

Avoiding applications of Collapse

Which rules could transform a state in which Collapse does

not apply into one in which it does?

Orient
c = d, E

c → d, E
if c � d Delete

c = c, E

E

Simplify
c = d, c → d′, E

d′ = d, c → d′, E

Collapse
c → d′, c → d, E

c → d′, d → d′, E
if d � d′

Compose
c → d, d → d′, E

c → d′, d → d′, E

Only Orient and Compose (assuming we never apply

Collapse).

6

Avoiding applications of Collapse (cntd.)

Assume we move from a state in which Collapse doesn’t

apply to one in which it does. The new state has to be of

the form {c → d, c → d′, E} with d � d′.

Consider the case in which c → d′ has just been generated

(by Orient or Compose).

• Case 1:

Orient
c = d′, {c → d, E′}

c → d′, {c → d, E′}

but note that here Simplify also applies

Simplify
c = d′, c → d, E′

d = d′, c → d, E′

and now Collapse is not applicable.

SOLUTION: Simplify has priority over Orient.

7

Avoiding applications of Collapse (cntd.)

Assume we move from a state in which Collapse doesn’t

apply to one in which it does. The new state has to be of

the form {c → d, c → d′, E} with d > d′.

Consider the case in which c → d′ has just been generated

(by Orient or Compose).

• Case 2:

Compose
c → e, e → d′, {c → d, E′}

c → d′, e → d′, {c → d, E′}

but note that e has to be d (why?) Thus, we have

Compose
c → d, d → d′, E′

c → d′, d → d′, E′

and in this new state Collapse does not apply.

8

Avoiding applications of Collapse (cntd.)

Assume we move from a state in which Collapse doesn’t

apply to one in which it does. The new state has to be of

the form {c → d, c → d′, E} with d > d′.

The case in which c → d′ has just been generated (by

Orient or Compose) can be avoided by exhaustively

applying Simplify before Orient.

The case in which c → d has just been generated (by Orient

or Compose) is similar.

Using this strategy, we can get rid of Collapse, because it

will never be applicable.

9

The Compose rule

Remember: our goal is to obtain a convergent (confluent

and terminating) TRS.

Termination is ensured using any strategy.

We have seen that if Simplify is exhaustively applied before

Orient, all the intermediate states will give us confluent

TRS.

CONCLUSION: Compose is not necessary. So, let’s forget

about it (for the moment).

10

Choosing a good ordering

According to the previous slides, our procedure will run the

following loop until there is no unoriented equation:

1. Pick an equation c = d.

2. Apply Simplify exhaustively and get c′ = d′.

3. If c′ is d′, Delete. Otherwise, Orient it giving c′ → d′ if

c′ > d′.

Complexity: O(nL), being n is the number of equations and

L the number of possible applications of Simplify to an

equation.

Instead of L, we can compute the maximal number of times

a constant a can be rewritten. That is, the maximum

length of a path of the form a → a1 → . . . → an.

GOAL: minimize the length of such a path

11

Choosing a good ordering (contd.)

Given the ordering a1 � a2 � . . . � an, and the equations

{a1 = a2, a2 = a3, . . . , an−1 = an} we can get a path of

length n: a1 → a2 → . . . → an (worst case!).

Improvement: choose the ordering on the fly.

Given a simplified equation c = d (c and d are normal forms

with respect to the TRS defined so far), its orientation will

be c → d if |c| ≤ |d|, being |c| (resp. |d|) the number of

constants in the equivalence class of c (resp. d).

Since for each oriented rule c → d, the class of |c| at least

doubled its size, any path has length at most lgn, being n

the number of constants.

With these ordering restrictions, the complexity of the

procedure is O(m lgn), being m the number of equations

and n the number of constants.

12

Using Compose to improve the
efficiency

Imagine we pick the equation c0 = d. We first have to

Simplify it exhaustively: c0 → c1 → . . . → ck, being ck its

normal form.

Later, we may pick another equation c0 = e, and c0 will

have to be normalized using at least the previous k Simplify

steps. Redundant work!!!

SOLUTION: the first time we normalize c, we can at the

same time apply Compose (compress the path) and get the

oriented equations ci → ck for i in 0 . . . k − 1.

The next time we need to normalize c we will perform k

steps in a single one, using the rule c → ck.

This optimization, known as path-compression, allows one

to run the procedure in time O(mα(m, n)), where α(m, n) is

a VERY slow-growing function.

13

Abstract Congruence Closure

INPUT: set of ground equations E and s=t.

QUESTION: Is E |= s=t true?

Equations in E and s = t build over signature Σ consisting
only of fixed-arity function symbols and constants.
Rules are the ones of Abstract Union-Find plus:

Extend
s[f(c1, . . . , ck)] = t, E

s[c] = t, f(c1, . . . , ck) → c, E
if f ∈ Σ, c ∈ K

Simplify
s[u] = t, u → c, E

s[c] = t, u → c, E

Superpose
f(c1, . . . , ck) = c, f(c1, . . . , ck) = d, E

c = d, f(c1, . . . , ck) = c, E

Collapse
f(. . . , c, . . .) → d, c → c′, E

f(. . . , c′, . . .) → d, c → c′, E
Compose

f(. . .) → c, c → d, E

f(. . .) → d, c → d, E
14

Initial transformations

First of all, two initial transformations are performed:

1. Curryfy (like in the implementation of FP):
s[f(c1, . . . , cn)] = t, E

s[·(·(. . . · (·
︸ ︷︷ ︸

n−1 times

(f, c1), c2), . . . , cn)] = t, E

After Curryfying: only one binary symbol “·” and constants.

Example: Curryfying f(a, g(b), c) gives ·(·(·(f, a), ·(g, b)), c)

2. Flatten(Extend + Simplify):

Allows one to assume: terms of depth ≤ 1

Introduces a linear number of new constants

Example: Flattening { ·(·(·(f, a), ·(g, b)), c) = i} gives

{ ·(f, a) → d, ·(g, b) → e, ·(d, e) → h, ·(h, c) = i }

15

Reformulation of the problem

Now the CC problem is: E |= a = b? (a, b, c, d, e cts.)

where equations in E are of the form ·(c, d) = e or c = d.

The rules to be applied are the ones of the Abstract

Union-Find plus:

Superpose
·(c1, c2) → c, ·(c1, c2) → d, E

c = d, ·(c1, c2) → c, E

Collapse1
·(c1, c2) → d, c1 → c′1, E

·(c′1, c2) → d, c1 → c′1, E
Collapse2

·(c1, c2) → d, c2 → c′2, E

·(c1, c′2) → d, c2 → c′2, E

Compose
·(c1, c2) → c, c → d, E

·(c1, c2) → d, c → d, E

16

Ideas behind the algorithm

Due to the flattening process each term can now be

identified with a constant. The question whether s = t can

be reduced to the question cs = ct for certain constants cs,

ct.

Therefore, our goal is to detect which new equalities

between constants arise due to the function symbols.

In the rules, these new equalities are detected by Superpose.

IDEA: we will need a Union-Find data structure and some

procedure to detect these new equalities between constants.

17

Congruence closure: our data structures

1. Pending unions: a list of pairs of cts yet to be merged.

2. Representative table: array indexed by constants, with

for each constant c its current representative rep(c).

3. Class lists: for each repres., the list of all cts in its class.

4. Lookup table: for each input term ·(a, b),

Lookup(rep(a), rep(b)) returns in constant time a constant c

such that ·(a, b) = c (⊥ if there is none).

5. Use lists: for each representative a, the list of input

equations ·(b, c) = d such that a is rep(b) or rep(c) or both.

18

Congruence closure: our algorithm

While Pending 6= ∅ Do Notation: c′ means rep(c)
remove a = b from Pending

If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
For each c in ClassList(a′) Do

set rep(c) to b′ and add c to ClassList(b′)
EndFor
For each ·(c, d) = e in UseList(a′) Do

If Lookup(c′, d′) is some f and f ′ 6= e′ Then
add e′ = f ′ to Pending

EndIf
set Lookup(c′, d′) to e′

add ·(c, d) = e to UseList(b′)
EndFor

EndIf
EndWhile

19

Running example

f(a) = g(b)
g(c) = h(f(c), g(a))

b = c

f(c) = g(a)
h(d, d) = g(b)

g(a) = d







=⇒




















·(f, a) = e1
·(g, b) = e2
·(g, c) = e3
·(f, c) = e4

·(h, e4) = e5
·(g, a) = e6

·(e5, e6) = e7
·(h, d) = e8
·(e8, d) = e9




















+













e1 = e2
e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d













And we initialize Lookup table:

{·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) = e4, ·(h, e4) =

e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) = e9}

20

Running example (contd.)

f(a) = g(b)
g(c) = h(f(c), g(a))

b = c

f(c) = g(a)
h(d, d) = g(b)

g(a) = d







=⇒




















·(f, a) = e1
·(g, b) = e2
·(g, c) = e3
·(f, c) = e4

·(h, e4) = e5
·(g, a) = e6

·(e5, e6) = e7
·(h, d) = e8
·(e8, d) = e9




















+













e1 = e2
e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d













Similarly, initialization for UseList is:

UseList(a) = {·(f, a) = e1, ·(g, a) = e6}
UseList(b) = {·(g, b) = e2}
UseList(c) = {·(g, c) = e3, ·(f, c) = e4}
...

21

Running example (contd.)















Pending

e1 = e2
e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d

























UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

22

Running example (contd.)

In normal form: e1 → e2.













Pending

e1 = e2
e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d

























UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

23

Running example (contd.)

In normal form: e1 → e2. We have UseList(e1) = ∅.














Pending

e1 = e2
e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d

























UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a b c d e2 e2 e3 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

24

Running example (contd.)

In normal form: e3 → e7.












Pending

e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d























UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a b c d e2 e2 e3 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

25

Running example (contd.)

In normal form: e3 → e7. We have UseList(e3) = ∅.












Pending

e3 = e7
b = c

e4 = e6
e9 = e2
e6 = d























UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a b c d e2 e2 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

26

Running example (contd.)

In normal form: b → c.










Pending

b = c

e4 = e6
e9 = e2
e6 = d





















UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e2 e2 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

27

Running example (contd.)

In normal form: b → c. Let’s treat ·(g, b) = e2. Since
Lookup(g′, b′) = Lookup(g, c) = e3 and e′3 6= e′2, we add e7 = e2 to
Pending.










Pending

b = c

e4 = e6
e9 = e2
e6 = d





















UseList

b = {·(g, b) = e2} e6 = {·(e5, e6) = e7}
c = {·(g, c) = e3, ·(f, c) = e4} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e2 e2 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e3, ·(f, c) =
e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =
e9}

28

Running example (contd.)
In normal form: b → c. Let’s treat ·(g, b) = e2. Since
Lookup(g′, b′) = Lookup(g, c) = e3 and e′3 6= e′2, we add e7 = e2 to
Pending. Now, Lookup(g, c) = e7 and add ·(g, b) = e2 to
UseList(c).










Pending

e7 = e2
e4 = e6
e9 = e2
e6 = d





















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e2 e2 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =
e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =
e9}

29

Running example (contd.)

In normal form: e2 → e7.










Pending

e7 = e2
e4 = e6
e9 = e2
e6 = d





















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

30

Running example (contd.)

In normal form: e2 → e7. Again UseList(e2) = ∅.










Pending

e7 = e2
e4 = e6
e9 = e2
e6 = d





















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e4 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

31

Running example (contd.)

In normal form: e4 → e6.








Pending

e4 = e6
e9 = e2
e6 = d


















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e6 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9}

32

Running example (contd.)

In normal form: e4 → e6. Let’s treat ·(h, e4) = e5. Since
Lookup(h′, e′4) = Lookup(h, e6) = ∅, just add Lookup(h, e6) = e5 to
Lookup and ·(h, e4) to UseList(e6).








Pending

e4 = e6
e9 = e2
e6 = d


















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e4 = {·(h, e4) = e5} e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e6 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =
e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =
e9}

33

Running example (contd.)

In normal form: e4 → e6. Let’s treat ·(h, e4) = e5. Since
Lookup(h′, e′4) = Lookup(h, e6) = ∅, just add Lookup(h, e6) = e5 to
Lookup and ·(h, e4) to UseList(e6).








Pending

e4 = e6
e9 = e2
e6 = d


















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e6 e5 e6 e7 e8 e9

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =
e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =
e9, ·(h, e6) = e5}

34

Running example (contd.)

In normal form: e9 → e7 (and not the other way around). Again

UseList(e9) = ∅.






Pending

e9 = e2
e6 = d
















UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c d e7 e7 e7 e6 e5 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5}

35

Running example (contd.)

In normal form: d → e6 (and not the other way around).

[

Pending

e6 = d

]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e5 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5}

36

Running example (contd.)
In normal form: d → e6 (and not the other way around). Let’s

treat ·(h, d) = e8. Since Lookup(h′, d′) = Lookup(h, e6) = e5 and

e′8 6= e′5, add e5 = e8 to Pending. We also add ·(h, d) = e8 to

UseList(e6).

[

Pending

e6 = d

]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5} e8 = {·(e8, d) = e9}
d = {·(h, d) = e8, ·(e8, d) = e9} e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e5 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5}

37

Running example (contd.)
In normal form: d → e6 (and not the other way around). Let’s

treat ·(h, d) = e8. Since Lookup(h′, d′) = Lookup(h, e6) = e5 and

e′8 6= e′5, add e5 = e8 to Pending. We also add ·(h, d) = e8 to

UseList(e6).

[

Pending

e5 = e8

]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5, ·(h, d) = e8}
d = {·(h, d) = e8} e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e5 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5}

38

Running example (contd.)
In normal form: d → e6 (and not the other way around). Let’s

treat ·(h, d) = e8. Since Lookup(h′, d′) = Lookup(h, e6) = e5 and

e′8 6= e′5, add e5 = e8 to Pending. We also add ·(h, d) = e8 to

UseList(e6).

[

Pending

e5 = e8

]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5, ·(h, d) = e8, ·(e8, d) = e9}

e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e5 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5, ·(e8, e6) = e9}

39

Running example (contd.)
In normal form: e5 → e8. Let’s treat ·(e5, e6) = e7. Since

Lookup(e′5, e′6) = Lookup(e8, e6) = e9, we should add e′7 = e′9, but

it is discarded because it already holds.

[

Pending

e5 = e8

]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5, ·(h, d) = e8, ·(e8, d) = e9}

e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e8 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5, ·(e8, e6) = e9}

40

Running example (contd.)
Now, we could ask whether g(a) = h(d, d) holds. After curryfing

and flattening, the question is whether e6 = e9, which is false.

On the other hand, we can check that g(c) = h(f(b), d) because

it is equivalent to e3 = e9, which is obviously true.

[

Pending
]











UseList

c = {·(g, c) = e3, ·(f, c) = e4, ·(g, b) = e2}
e6 = {·(e5, e6) = e7, ·(h, e6) = e5, ·(h, d) = e8, ·(e8, d) = e9}

e1 = e2 = e3 = e9 = ∅
e5 = {·(e5, e6) = e7} e8 = {·(e8, d) = e9}











Constant a b c d e1 e2 e3 e4 e5 e6 e7 e8 e9
Representative a c c e6 e7 e7 e7 e6 e8 e6 e7 e8 e7

Lookup : {·(f, a) = e1, ·(g, b) = e2, ·(g, c) = e7, ·(f, c) =

e4, ·(h, e4) = e5, ·(g, a) = e6, ·(e5, e6) = e7, ·(h, d) = e8, ·(e8, d) =

e9, ·(h, e6) = e5, ·(e8, e6) = e9}

41

Analysis of the algorithm

O(n log n) time and linear space:

assume k different constants (usually, k << n)

each ct changes representative at most log k times

maintenance rep and ClassList: k log k

maintentance Lookup and UseList: 2n log k

Correctness:

Let RepresentativeE be the non-trivial eqs a = a′ and

·(a′, b′) = c′ where a, b and c cts in E0 and c is Lookup(a′, b′).

Note: final RepresentativeE is the resulting closure

(a convergent TRS)

Key invariant: (RepresentativeE ∪ Pending)∗ = E∗
0

42

Integer Offsets

Bryant et al. add interpreted succ and pred symbols,

extending EUF to CLU logic.

The syntax is now the following one:

formula :== true | false | predicateSymbol(term, · · · , term)
| ¬formula | (formula ∨ formula) | (formula ∧ formula)
| (term = term)

int term :== functionSymbol(int term, · · · , int term)
| ite(formula, int term, int term)
succ(int term) | pred(int term)

Note that all non-boolean terms are interpreted over the

integers

43

Integer Offsets (contd.)

write (sub)terms succ(. . . succ
︸ ︷︷ ︸

k times

(t) . . .) as t + k

same with negative k for pred(. . . pred
︸ ︷︷ ︸

k times

(t) . . .)

Example: f(a)=c ∧ f(b+1)=c+1 ∧ a−1=b

Note that now E0 can be unsatisfiable.

a + 2 = b − 3
b − 5 = c + 7

c = d − 4
is

a = b − 5
b = c + 12
c = d − 4

An infinite number of classes, the ones of . . . , b−1, b, b+1, . . .

can be represented by: { b = a+5 = c+12 = d+8}

44

Integer Offsets (contd.)

Can assume input equations of the form a = b + k or of the

form ·(a, b + kb) = c + kc (not hard to see)

Pending now contains eqs like a = b+k

Representative(a) returns pair (b, k) such that b = a+k

Similarly for Class lists, Lookup table, and Use lists.

Obtain algorithm with same complexity!

BUT

If also atoms s > t are allowed in (positive conjunction) input

then satisfiability becomes NP-hard (reduce k-coloring, see

paper for details).

45

CC: our algorithm with offsets
While Pending 6= ∅ Do

remove a = b+k with representative a′ = b′+kb′ from Pending

If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
For each c+ kc in ClassList(a′) Do

set rep(c) to (b′, kc − kb′) and add it to ClassList(b′)
EndFor
For each ·(c, d+kd) = e+ke in UseList(a′) Do

If Lookup(c′, r(d+kd)) is f+kf and r(f+kf) 6= r(e+ke) Then

add e = f+(kf−ke) to Pending

EndIf
set Lookup(c′, r(d+kd) to r(e+ke)
add ·(c, d+kd) = e+ke to UseList(b′)

EndFor
ElseIf a′ = b′ and kb′ 6= 0 Then return unsatisfiable

EndIf
EndWhile

46

CC-Ineq is NP-hard

Given a graph G = (V, E), where V = {a1, . . . , an} and

E = {(b1, b′1), . . . , (bm, b′m)} and an integer k, the following

CC-Ineq formula is satisfiable if and only if G is k-colorable:

G(c + 1, c + 1) = G(c + 2, c + 2) = . . . = G(c + k, c + k) = true

c + k + 1 > f(a1) > c true > G(f(b1), f(b′1))
c + k + 1 > f(a2) > c true > G(f(b2), f(b′2))...
c + k + 1 > f(an) > c true > G(f(bm), f(b′m))

Intuitively, f represents the colour of each vertex (k

possibilities), and G is used to express that no two adjacent

vertices will have the same colour.

47

