SATO: an Efficient Propositional Prover

Hantao Zhang*

Department of Computer Science
The University of Iowa
Towa City, IA 52242-1419, USA
hzhang@cs.uiowa.edu

SATO (Satisfiability Testing Optimized) is a propositional prover based on
the Davis-Putnam method [3], which is is one of the major practical methods for
the satisfiability (SAT) problem of propositional logic. The first report of SATO
appeared in [12]. Since then, we constantly add new techniques into SATO to
make it more efficient [14, 13].

One of the major motivations to develop SATO was to attack open Latin
square problems. While SATO works well on Latin square problems, its previous
versions did not work well on many classes of the SAT problem. In the fall of
1996, we made an effort to improve SATO so that it works well on a large set
of the SAT problem. In the following, we discuss briefly two techniques that
we found effective to improve SATO performance. One is about splitting rules;
the other is about conflict analysis. While these two techniques are known in
the community, the real challenge is how to integrate these techniques without
weakening each other. We are happy to report here that the two techniques
integrated very well with the techniques previously implemented in SATO. In
the following discussions, we assume that the reader is familiar with propositional
logic and the Davis-Putnam method [3].

One important place where heuristics may be inserted in the Davis-Putnam
method is in the choice of a literal for splitting. It is well-known that different
splitting rules make the performance of the Davis-Putnam algorithm different
by a magnitude of several orders. While SATQO provides several popular splitting
rules, each rule works well only for a particular class of SAT instances.

For instance, in our study of quasigroup problems, one rule seems better than
the others: choose one literal in one of the shortest positive clauses (a positive
clause is a clause where all the literals are positive). On the other hand, a proved
effective splitting rule is to choose a variable such that the value fo(z)* fo(—x)
is maximal, where f5(L) is one plus the number of occurrences of literal L in
binary clauses [2, 5].

We tried to combine the above two rules into one as follows: Let 0 < a <1
and n be the number of shortest non-Horn clauses in the current set. At first,
we collect all the variable names appearing in the first [a % n] shortest positive
clauses. Then we choose z in this pool of the variables with the maximal value
f2(x) * fa(—z). We found that this mixed rule worked quite well if a is the
percentage of non-Horn clauses in the input multiplied by 5. That is, the splitting
rule adjusts by itself for various input clauses.

* Supported in part by NSF under grants CCR-9504205 and CCR-9357851.

Intelligent backjumping has been extensively studied in the search proce-
dures for solving constraint satisfaction problems [10]. Since the SAT problem
is a special case of constraint satisfaction, many researchers have applied this
technique in the Davis-Putnam method [7].

The basic idea is very simple: A literal is assigned to true in the Davis-
Putnam method either by the splitting rule (active) or by unit propagation
(passive). When an empty clause is found, backtracking is needed. At this point,
we may collect all the active literals which played a role in the making of the
empty clause. If the current active literal does not belong to this set, we do not
need to try the second truth value of this literal. That is so-called “intelligent
backjumping”.

In order to avoid the collection of the same set of literals at a later stage
of the search, we may save the disjunction of the negations of these collected
literals as a new clause in the system. Silva and Sakllah used the same idea in
the Davis-Putnam method and reported very good experimental results [9]. We
also implemented this idea as well as the self-adjusting splitting rule in the latest
version of SATO, i.e., SATO 3.0.

This technique of creating new clauses does not always improve the perfor-
mance. In fact, for certain SAT instances, the performance becomes much worse
because the prover spends much time and memory storing these new clauses.
Thus, an important parameter that greatly affects the performance is the max-
imal length of the newly created clauses allowed to be saved.

In 1993-1994, the participants of The Second DIMACS Implementation Chal-
lenge collected a large set of SAT instances from different application areas. This
set of SAT instances is called the DIMACS benchmarks, available on the internet
from [6].

In Table 1, we present experimental results of SATO 3.0 on the DIMACS
benchmarks, in comparison with other state-of-the-art and publicly available
SAT provers, including GRASP [9], POSIT [5], C-SAT [4], H2R [8], NTAB [2]
(the latest version of TABLEAU), TEGUS [11], DPL [1].2 The CPU times for
these provers are obtained from [9]. All of the times were scaled to the equivalent
CPU times on a SUN SPARC 5/85 machine, using the test program provided
at DIMACS [6] for comparing different machine architectures.?

In the first column of the table, the class names of SAT instances are given.
The number under each class name is the number of the instances in that class.
Three classes of the problems in the DIMACS benchmarks are not included in
the table: par32 (10 instances), £ (three instances), and g (four instances). The
reason is that none of the provers listed in the table can solve any instance in
these three classes in less than 10,000 seconds of CPU time. Of each entry in the

2 Incomplete propositional provers like GSAT are excluded here because many in-
stances are unsatisfiable.

3 The execution times of DFMAX on the SUN SPARC 5/85 are 0.03, 0.68, 6.12, 39.05,
and 149.92 (seconds), respectively, for r100, ..., r500. SATO3 was compiled in gcc
with the option -O3 on a SGI Onyx machine. The run times of DFMAX on this
machine are: 0.01, 0.36, 3.06, 18.85, and 72.0.

GRASP|POSIT| H2R | C-SAT|NTAB|TEGUS| DPL |SATO2|SATO3

Prob.
aim-50 0.4 0.4 2.3| 10,002| 24.3 2.2 10.7 12.7 0.02
24 24 24 24 23 24 24 24 24 24
aim-100 1.8 1,290| 21,571 5.1139,569| 107.9| 58,510 60,390 0.4
24 24 24 23 24 18 24 21 20 24
aim-200 10.8(117,991|150,004| 50,043(69,410| 14,059(156,196{150,095 1.1
24 24 13 9 19 11 23 9 9 24
bf 7.2| 20,037 10,200| 30,509|27,900(26,654| 40,000 35,695 2.9
4 4 2 3 1 2 2 0 1 4
dubois 34.4| 77,189| 73,729| 79,620|47,952| 90,333| 96,977| 71,528 1.5
13 13 7 7 7 5 5 5 7 13
hanoi| 14,480| 10,117| 10,733| 15,533|15,840| 11,641 20,000| 20,000 10,001
2 1 1 1 1 1 1 0 0 1
hole| 12,704| 937.9| 11,182 858.9 1,244| 21,301| 11,404| 362.2| 841.7
5 4 5 4 5 5 3 4 5 5
ii8 23.4 2.3| 30,005| 16,966|11,411 11.8| 84,189 0.4 1.1
14 14 14 11 13 13 14 7 14 14
iiie6| 10,311| 10,120| 75,940 50,489(10,126| 269.6| 83,933| 85,522 5.3
10 9 9 3 5 6 10 2 7 10
ii32 7.0 650.1] 36,029|170,000| 697.0 1,231| 21,520| 10,004 11.8
17 17 17 14 0 17 17 15 16 17
jnh 21.3 0.8 5.8 7.6 10.9| 6,055 40.0 11.0 2.1
50 50 50 50 50 50 50 50 50 50
par8 0.4 0.1 0.6| 70,019 0.7 1.5 0.8 0.2 0.2
10 10 10 10 3 10 10 10 10 10
pari6é| 9,844 72.1) 264.8| 70,809| 591.5| 9,983| 11,741| 10,447 607
10 10 10 10 3 10 10 10 10 10
pret 18.2| 40,691| 40,342| 41,201(80,000| 42,579| 41,429| 40,430 3.0
8 8 4 4 4 0 4 4 4 8
ssa 6.5 85.3| 20,006| 14,903|20,024| 20,230| 80,000 30,092 4.0
8 8 8 6 7 6 6 0 5 8

Table 1. Experimental Results on the DIMACS benchmarks

table, the first number is the cumulated CPU time spent by a prover for that
class of the problems (if a prover cannot solve an instance under 10,000 seconds,
the assumed CPU time is 10,000 seconds); the second number is the number of
the instances solved by the prover in that class.

SATO2 denotes SATO 2.2 and SATO3 denotes SATO 3.0. The former is an
older version of SATO that does not use the intelligent backjumping and the
self-adjusting splitting rule. For this experiment with SATO 3.0, the maximal
length of the newly created clauses allowed to be saved is 20. It is apparent that
SATO 3.0 is significantly faster than SATO 2.2 on the DIMACS benchmarks
(except two classes, 118 and hole). In fact, comparing with all the provers listed
in the table, the performance of SATO 3.0 is either the best or the second best

for every class of the problems, except pari16.

The code of SATO 3.0 is available from World Wide Web at

http:/ /www.cs.uiowa.edu/~hzhang/sato.html

References

o0

10.

11.

12.

13.

14.

. Barth, P.,; A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean

optimization, Technical Report MPI-I-95-2-003, Max-Plank-Institut fur Infor-
matik, 1995.

Crawford, J., Auton, L., (1993) Experimental results on the cross-over point in
satisfiability problems. In Proc. of the 11th National Conference on Artificial In-
telligence (AAAI-93), pp. 22-28.

Davis, M., G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery 5, 7 (July
1962), 394-397.

Dubois, O, Andre, P., Boufkhan, Y., Carlier, J., SAT versus UNSAT, see [6].
(1995) Freeman, J.W., Improvements to propositional satisfiability search algo-
rithms. Ph.D. Dissertation, Dept. of Computer Science, University of Pennsylva-
nia.

Johnson, D.S., Trick, M.A., (eds.) The second DIMACS implementation challenge,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science (see
http://dimacs.rutgers.edu/challenges/)

(1980) McAllester, D.A., An outlook on truth maintenance, AI Memo 551, MIT
AT laboratory.

Pretolani, D.; Efficiency and stability of hypergraph SAT algorithms, see [6].
Silva, J.P.M., Sakallah, K.A., Conflict analysis in search algorithms for proposi-
tional satisfiability. Technical Reports, Cadence European Laboraties, ALGOS,
INESC, Lisboa, Portugal, May 1996.

Stallman, R.M., Sussman, G.J., (1977) Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
vol. 9, 135-196

Stephan, P.R., Brayton, R.K., Sangiovanni-Binventelli, Combinational test gener-
ation using satisfiability, Memo no. UCS/ERL M92/112, Dept. of Electrical Engi-
neering and Computer Science, University of California at Berkeley, Oct. 1992.
Zhang, H., SATO: A decision procedure for propositional logic. Association for
Automated Reasoning Newsletter, 22, 1-3, March 1993.

Zhang, H., Bonacina, M.P., Hsiang, H.: (1996) PSATO: a distributed propositional
prover and its application to quasigroup problems. To appear in Journal of Sym-
bolic Computation.

Zhang, H., Stickel, M. (1994) Implementing the Davis-Putnam algorithm by tries.
Technical Report, Dept. of Computer Science, The University of Iowa.

This article was processed using the IXTEX macro package with LLNCS style

