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Abstract

The Davis-Putnam method is one of the major practical methods for the satisfi-
ability (SAT) problem of propositional logic. We show how to implement the Davis-
Putnam method efficiently using the trie data structure for propositional clauses by
presenting seven implementations of the method. We propose a new technique for
implementing unit propagation whose complexity is sublinear to the number of occur-
rences of the variable in the input. We present the performance of our programs on
some quasigroup problems. The efficiency of our programs allowed us to solve some
open quasigroup problems.

1 Introduction

In recent years, there has been considerable renewed interest in the satisfiability (SAT)
problem of propositional logic. The SAT problem is known to be difficult to solve—it is
the first known NP-complete problem. Because the SAT problem is fundamental to many
practical problems in mathematics, computer science, and electrical engineering, efficient
methods that can solve a large subset of SAT problems are eagerly sought. Empirical
research has been very fruitful for the development of efficient methods for SAT problems.

The Davis-Putnam method [3, 4] has long been a major practical method for solving
SAT problems. It is based on unit propagation (i.e., unit resolution and unit subsumption)
and case-splitting. It is known that many factors affect the performance of the method:
the data structure for clauses, the choice of variable for splitting, etc. In this paper, we
will concentrate on the use of tries (discrimination trees) for the Davis-Putnam method.
In [5], de Kleer used tries to represent propositional clauses for efficient subsumption.

In the past, both of us have used tries to represent first-order terms and to implement
efficient rewriting-based theorem provers. In Autumn 1992, we independently started using
tries in the Davis-Putnam method. By using the trie data structure, our programs gain
something in efficiency, and much in elegance. Some preliminary results of our experiments
are presented in [14] and [15]. In this paper, we present in detail the data structures used
in our programs.

One of the major motivations for developing our programs was to solve some open
quasigroup problems in algebra [1]. The usefulness of computer programs to attack these
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quasigroup problems has been demonstrated in [16, 7, 14]. We think these quasigroup
problems are much better benchmarks than randomly generated SAT problems for testing
constraint solving methods: the problems have fixed solutions; descriptions of the prob-
lems are simple and easy to communicate; most importantly, some cases of the problems
remain open, offering challenge and opportunities for friendly competition as well as con-
tributions to mathematical knowledge. Besides having large search spaces, quasigroup
problems are demanding examples for the Davis-Putnam method because their proposi-
tional representations contain n3 variables and (depending on the problem) from O(n?)
to O(n®) clauses, so large sets of clauses with hundreds of thousands of literals must be
handled.

We have not tested any randomly generated SAT problems in our experiments. Re-
cently, the location of hard SAT problems has been identified by empirical research [11, 2].
However, different methods are still hard to compare based on their performance on ran-
domly generated problems because some hard problems may occur in an area where most
problems are easy and vice versa. Recently, some incomplete methods based on local
search have been proposed which can solve very large size SAT problems [8, 12]. The
usefulness of these methods for solving quasigroup problems remains to be seen. However,
these methods cannot entirely replace the Davis-Putnam method because many quasi-
group problems are known to have no solutions and incomplete methods cannot prove
that no solution exists or count the number of solutions.

1.1 The Davis-Putnam Method

The Davis-Putnam method is based on three simple facts about truth table logic. Firstly,
where A and B are any formulae, the conjunction AA (AV B) is equivalent to AA B and
the conjunction A A (AV B) is equivalent to A. It follows that the application of unit
resolution and subsumption to any set of propositional clauses results in an equivalent
set. Secondly, where X is any set of formulae and A any propositional formula, X has a
model iff either X U {A} has a model or X U {A} has a model. Thirdly, where X is any
set of propositional clauses and A any propositional atomic formula, if A does not occur
at least once positively in [some clause in] X and at least once negatively, then the result
of deleting from X all clauses in which A occurs is a set which has a model iff X has a
model.

A simple algorithm based on the first two of these facts' is shown in Figure 1. That
it is sound and complete for propositional clause problems is well known. Naturally,
one important place at which heuristics may be inserted is in the choice of a literal for
splitting. In this paper, all of our programs simply choose the first literal in one of the
shortest positive clauses. We can see potential virtue in using a more elaborate selection
heuristic—for instance, giving some weight to the number of constraints in which a literal
is involved—but that is not the focus of this paper. Our focus is on how to represent
propositional clauses and implement unit propagation efficiently.

'Eliminating “pure” variables that occur only positively or only negatively is not necessary for com-
pleteness. Moreover, in many types of problems, such as the quasigroup problems that we are especially
interested in, the condition never occurs.



Figure 1: A Simple Davis-Putnam Algorithm

function Satisfiable ( clause set S ) return boolean
/* unit propagation */
repeat
for each unit clause L in S do
delete from S every clause containing L
delete L from every clause of S in which it occurs
od
if § is empty then
return TRUE
else if the null clause is in S then
return FALSE
fi
until no further changes result
/* splitting */
choose a literal L occurring in S
if Satisfiable ( SU{L} ) then
return TRUE
else if Satisfiable (SU{L} ) then
return TRUE
else

return FALSE
fi

end function

1.2 Trie Data Structure for Propositional Clauses

Our programs gain something in efficiency, and much in elegance, from using the ¢rie data
structure, first used to represent sets of propositional clauses in [5].

We assume that each propositional variable has a unique index, which is a positive
integer. The index of the negation of a variable is the negation of the index of that
variable. A clause is represented by the list of indices of the literals in the clause.

Conceptually, the trie data structure for propositional clauses is very simple. It is a
tree all of whose edges are marked by indices of literals and whose leaves are marked by a
clause mark. A clause is represented in a trie as a path from the root to a leaf such that
the edges of the path are marked by the literal indices of the clause. To save space, if two
clauses (represented as lists of integers) have the same prefix of length n, then they should
share a path of length n in the trie.

If all the nodes that have an edge of the same mark to the same parent node in a trie are
made into a linear list, we may use a 3-ary tree to represent a trie as follows: Each node of
the tree is either empty (nil), or a clause end-mark (0O), or a 4-tuple (var, pos, neg, rest),
where var is a variable index, pos is its positive child node, neg is its negative child node,
and rest is its brother node. The interpretation is that the edge from this node to pos is
marked by var; the edge from this node to neg is marked by (—wvar); and rest is the next



Figure 2: The trie-merge procedure.

function trie-merge ( trie t1, trie to ) return trie
if t; = 0 or ¢t = O then
return O
else if t{ = nil then
return ity
else if to = nil then
return t;
fi
let t1 = (v1,p1,n1,71)
let tg = <’U2,p2,’n2,7‘2)
if V1 = Vg then
return (v, trie-merge(p1, p2), trie-merge(ny, ne), trie-merge(ri, r2))
else if v1 < vy then
return (vi,p1,n1, trie-merge(ry, t2))
else
return (vy, pa, na, trie-merge(ra, t1))
fi
end function

node in the linear list of the nodes that share the same parent node in the trie.

A set S of (nontautologous) propositional clauses can be easily represented by a trie
Ts as follows: If S is empty, then Tg = nil; if S contains a null clause, then Ty = O;
otherwise, choose any variable index v and divide S into three groups:

e P={vV P, .., vV P,}—the clauses that contain v positively.
e Q={vVQi, ..., TV Qn}—the clauses that contain v negatively.

e R={Ry, ..., Rj}—the clauses that do not contain v.

Let

e P'={Py,..., P,}—P with occurrences of v removed.

o Q' ={Q1,-..,Qmn}—Q with occurrences of T removed.

Let Tpr, Ty, and Tg be the trie nodes recursively representing P, @', and R, respectively.
Then S can be represented by T's = (v, Tpr, Ty, Tr). For example, if S = {1 Vz,T1 VT2 },
the indices of 1 and z9 are 1 and 2, respectively, then Ts = (1, (2, O, nil, nil), (2, nil, O, nil), nil).

A trie is said to be ordered if for any node (var, pos, neg, rest), var is smaller than any
variable index appearing in pos, neg and rest. The trie-merge operation, an extension
of the merge-sort algorithm that merges two ordered tries into a single one, is shown in
Figure 2. The insertion of one clause c¢ into a trie T can be done using trie-merge, if we
first create a trie T, for ¢ and then merge 7, and 7.

If the value of var is true, (var,pos, neg,rest) is equivalent to trie-merge(neg, rest).
Similarly, (var, pos,neg, rest) is equivalent to trie-merge(pos, rest) when the value of var
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is false. The nodes (var,pos,neg,0) and (var, 0,0, rest) are equivalent to 0. The node
(var,nil,nil, rest) is equivalent to rest. To save space, we also replace nodes by their
simpler equivalents when possible in the trie-merge operation.

The major operation in the Satisfiable procedure, unit propagation, can be easily im-
plemented on tries: when a variable var is forced to be true by a unit clause, we simply
replace each node (var, pos,neg, rest) in the trie by trie-merge(neg, rest); the case when
var is forced to be false is handled similarly.

The trie representation of a set of propositional clauses has several advantages for the
Davis-Putnam method:

Duplicate clauses are automatically eliminated when the trie is constructed.

The trie representation reduces memory requirements.

Unit clauses can be found quickly in a trie.

The unit propagation operation can be computed relatively efficiently. Because the
subtrie (var, pos, neg, rest) does not contain any variable var’ < var, it does not need
to be searched or altered when assigning a value to var’. Multiple unit propagation
operations can be done in a single traversal of the trie.

2 Quasigroup Problems

The quasigroup problems are given by Fujita, Slaney, and Bennett in their award-winning
IJCAI paper [7]. Roughly speaking, the problems concern the existence of v x v Latin
squares—each row and each column of a Latin square is a permutation of 0, 1, ..., v — 1—
with certain constraints. Given 0 < 14,5 < v, let 7 ¥ 7 denote the entry at the ¢th row and
jth column of a square.

The following clauses specify a v X v Latin square: for all elements x,y,u,w € S =

{0,...,(v—=1)},

THU=Y, T W =1y =>U=w : the left-cancellation law (1)
UXT=Y,WkT=Y=>U=wW : the right-cancellation law (2)
THRY=U,THY=W=U=w : the unique-image property (3)
(zxy=0)V---V(x*xy=(v—1)) : the (right) closure property (4)

It was shown in [14] that the following two clauses are valid consequences of the above
clauses and adding them into a prover reduces the search space.

(zx0=y)V---V(zx(v—1)=y) : the middle closure property (5)
Oxz=y)V---V(v—1)xxz=1y) : the left closure property (6)

For any z,y, z in {0, ..., (v — 1)}, the following constraints are given in [7]?:

>The QG7 constraint is the one used in [14], not [7].



Name Constraint

QG1 THRY =U,Z*W=UVHY =T, V*¥W=2=>T =2,y =W
QG2 THY S U,Z*¥W=U,Y*V =T, WkV=2 => T =2,y =W
QG3 (x*xy)*x(yxz) ==

QG4 (zxy)*(yxz) =y

QG5 ((x*xy)*xx)*xz =19y

QG6 (xxy)xy=x*(T*y)

QG7 ((x*xy)*xx)*xy==x

In the following, problem QGi.v denotes the problem represented by clauses (1)—(6)
plus QGi for S = {0, ..., (v — 1)}. In addition, clauses for the idempotency law, z x z = z,
and the constraint z % (v — 1) > z — 1, which eliminates some isomorphic models, are used
for each problem here. Further details on these problems can be found in [7] and [14].

Propositional clauses are obtained by simply instantiating the variables in clauses (1)—
(6) by values in S and replacing each equality z * y = z by a propositional variable py , ..
The number of the propositional clauses is determined by the order of the quasigroup (i.e.,
v) and the number of distinct variables in a clause. Constraints QG1l and QG2 can be
handled in the same way. For QG3-QG7, we have to transform them into “flat” form.
For example, the flat form of QG5 is

(zxy=2),(zxz=w) = (wxz=1y).

It can be shown that the two “transposes” of the above clause are also valid consequences
of QG5:
(wxz =y),(zxy=2)=> (z2xz=w),
(zxz=w),(wxz=y)=> (z*xy=2).

It has been confirmed by experiments that adding these “transposes” to the input can
reduce the search space. This is also true for QG3-QGT.

3 DDPP: A Straightforward Trie-based Implementation

The program DDPP (Discrimination-tree-based Davis-Putnam Prover) is a straightfor-
ward implementation of the Davis-Putnam method based on the trie-merge operation on
tries. DDPP is written in Lucid Common Lisp. A detailed description of DDPP can be
found in [10]. Several open problems about quasigroups were first solved by this simple
program [14]. They are QG5.13, QG5.14 and QG5.15 (negatively), and QG4.12 (posi-
tively). Performance of DDPP on some quasigroup problems is shown in Figure 4. The
number of branches is one plus the number of splittings in the Davis-Putnam method.
The times were collected in Lucid Common Lisp on a 40MHz Sun SPARCserver 670 with
128MB memory.

Because the trie-merge operation needs to create new trie nodes and the splitting
operation in the Davis-Putnam method uses a trie twice, it is expensive to implement
trie-merge destructively (i.e., modifying the fields of the existing trie nodes). Instead,
DDPP does the trie-merge operation nondestructively and the result of the trie-merge
operation shares (nearly) maximal structure with the original tries to minimize the memory
allocation.



4 LDPP: An Efficient Non-Trie-Based Implementation

DDPP was hindered by the speed of the crucial unit propagation operation. Although the
trie representation eliminated searching subtries (var, pos,neg, rest) for variables var’ <
var, extensive searching was still necessary. Moreover, the nondestructive trie-merge re-
quired some storage allocation, which is relatively slow.

LDPP (Linear-list-based Davis-Putnam Prover) is an efficient implementation of the
Davis-Putnam method that does not use a trie representation. Like DDPP, LDPP is
written in Common Lisp. Experimental results for DDPP and LDPP are given in Figure 4,
where identical sets of clauses were input to each prover. The disparity in number of
branches in the search space is due to different orderings of clauses and literals that result
in different literals being chosen for splitting operations. Results in later tables for SATO
also use the same sets of clauses. In spite of the disparity in number of branches, it is
meaningful to compare the search rates (i.e., branches per second) for DDPP, LDPP, and
SATO.

LDPP is generally much faster than DDPP. LDPP performs unit resolution and unit
subsumption operations very quickly by decrementing and setting fields. Resolvable or
subsumable clauses need not be searched for since each variable contains pointers to all
the clauses that contain the variable. Other recent implementations of the Davis-Putnam
method that employ a similar approach include Crawford and Auton’s TABLEAU [2], Letz’s
SEMPROP, and McCune’s ANL-DP [9]. LDPP’ is a faster variant of LDPP that explores
exactly the same search space as LDPP but does not perform the subsumption operation
(see Section 6.2).

In LDPP, a set of clauses is represented by a list of clauses and a list of variables. Each
clause contains the fields:

e positive-literals, negative-literals: List of pointers to variables occurring
positively (resp. negatively) in this clause.

e inactivated: This is nil if the clause is still active (i.e., has not been subsumed).
If the clause has been subsumed, this field contains a pointer to the variable whose
assignment subsumed this clause.

e number-of-active-positive-literals,number-of-active-negative-literals:
When inactivated is nil, this is the number of variables in positive-literals
(resp. negativeliterals that have not been assigned a value (i.e., that have not
been resolved away from this clause).

Each variable contains the fields:

e value: This is true if the variable has been assigned the value true, false if it has
been assigned false, and nil if no value has been assigned.

e contained-positively-clauses, contained-negatively-clauses: List of point-
ers to clauses that contain this variable positively (resp. negatively).

To assign true to a variable:

e Its value field is set to true.



e Every clause in contained-positively-clauses has its inactivated field set to
the variable, unless inactivated was already non-nil.

e Every clause in contained-negatively-clauses has its number-of-active-negative-
literals field decremented by one, unless inactivated was already non-nil. Note
that we don’t modify negative-literals itself. If the sum of number-of-active-
negative-literals and number-of-active-positive-literals reaches zero, the
current truth assignment yields the unsatisfiable empty clause. If the sum reaches
one, a new unit clause has been produced. The newly derived unit clause can be
identified by finding the only atom in positive-literals or negative-literals
whose value is nil. These are queued and assigned values before unit propagation
finishes.

To undo an assignment of true to a variable and thus restore the set of clauses to their
state before the assignment so that alternative assignments can be tested:

e The value field for the variable is set to nil.

e Every clause in contained-positively-clauses has its inactivated field set to
nil, provided inactivated had this variable as its value.

e Every clause in contained-negatively-clauses has its number-of-active-negative-
literals field incremented by one, provided inactivated is nil.

Assignment of false to a variable is done analogously. The set of clauses after a sequence
of assignments is represented by those clauses in the list whose inactivated field is still
nil. The literals still present in these clauses are just those in positive-literals and
negative-literals whose value is still nil.

5 SATO: Another Trie-based Implementation

The high cost of the trie-merge operation in DDPP, which motivated the abandonment
of the trie representation in LDPP, does not imply that the trie data structure is ineffec-
tive for the Davis-Putnam method. Actually, the implementations of the Davis-Putnam
method in the SATO program (SAtisfiability Testing Optimized) [15] did not use the trie-
merge operation. In this section, we describe some ideas used in SATO to improve the
performance of the Davis-Putnam method.

We used SATO to settle several open cases of quasigroup problems, including QGb5.14
(without the idempotency law), QG6.15, QG7.15 (negatively), QG2.14, QG2.15 and QG7.16
(positively). Some of these problems required several weeks of CPU-time on a powerful
workstation. The efficiency of SATO was indispensable for our success.

5.1 A New Algorithm for Unit Propagation

SATO possesses features of DDPP (trie representation) and LDPP (destructive operations
and lists of pointers to atom occurrences to eliminate search). The major idea used in
SATO is to keep two lists of literals: The head list is a collection of the occurrences of the
first literal of each clause and the tail list is a collection of the occurrences of the last literal
of each clause. If the first literal of a clause becomes true, that literal is simply removed



from the head list. If that literal becomes false, it is removed from the head list and we
search for the next unassigned literal in the clause and add it to the head list unless: (a)
if a literal with value true is found during the search process, no literal will be added to
the head list since the clause was subsumed by a previous assignment; (b) if every literal
in the clause has value false then a null clause has been found and that information is
returned; (c) if the next unassigned literal of the clause is also in the tail list, then a unit
clause has been found and that literal is collected in a list of “unit clauses”. The handling
of literals in the tail list is analogous.

The above idea implies that a clause should be represented as a double-linked list.
When the trie data structure is used, a literal is represented by a trie node together with an
edge from a node to its parent. That is, instead of the data structure (var, pos, neg, rest),
we use (var, pos,neg, rest, parent), where parent is the parent of the current node.

For efficiency, both the head list and tail list are grouped according to the variable
index of each node. That is, we use a variable table in which we not only record the value
of each variable (true, false, or unknown), but also a head list and a tail list of nodes
whose label is that variable. Initially, each head list contains at most one node. Whenever
a variable’s value goes from unknown to true (resp. false), we remove each node in the
head list of this variable and try to add the negative (resp. positive) child node—together
with its brothers—into the head list. We also remove each node in the tail list of this
variable; if its negative (resp. positive) child is equivalent to O, we try to add its parent
node into the tail list.

The first version of SATO does not use the tail list and thus does not need the parent
link in the trie data structure. While this implementation does not need dynamic memory
allocation, our experiments indicate that more than half of the total search time is spent on
deciding whether a trie is equivalent to O— this operation is necessary to locate unit clauses
and to select literals for splitting. This is because not every node with an interpreted
variable is removed from the trie. For example, the clause x V y is represented by T, =
(z, (y,0,nil,nil), nil), which is initially stored in the head list of variable . Now suppose
y has value false; then in our implementation, (y, O, nil,nil) will not be replaced by O.
To decide that z is in a unit clause, we have to search the whole T..

SATO is written in C and the times were collected on a 40Mhz Sun SPARCstation
2 with 32MB memory. In Figure 5, results for two versions of SATO are given—SATO1
uses only the head list and SATO2 uses both the head and tail lists. The experimental
results indicate that SATO2 is substantially faster than SATO1 on quasigroup problems.

5.2 Complexity Analysis

In the following, we show that the technique implemented in SATO2 for unit propagation
is better, both theoretically and practically, than the method of LDPP.

The Davis-Putnam method as given in Figure 1 consists of two major operations: unit
propagation and splitting. The unit propagation consists of a sequence of unit propagation
operations. For any moderate satisfiability problem, thousands of the splitting operations
will be performed, and each splitting will invoke unit propagation. Other things being
equal, the complexity of the Satisfiable procedure depends on that of unit propagation. In
the following, we concentrate on the complexity of unit propagation.

Given a set S of input clauses and any variable v, let P, be the number of clauses of
S in which v appears positively, and let IV, be the number of clauses in which v appears



negatively. It is easy to see that for LDPP, the complexity of the unit propagation operation
is O(P, + N,) when v receives a value, either true or false.

We show below that the unit propagation operation in SATO takes an amortized time
of O(N,) when v is assigned to true and O(P,) when v is assigned to false. To facilitate
the understanding, we may assume that each clause is represented by a double-linked list,
even though the trie data structure gives better results. We also assume that a literal
cannot be in both the head list and the tail list: if this is the case, we remove it from both
lists and add it to the unit-clause list.

Suppose z is assigned true and the number of T literals in the head list is HN,. We
need to perform H N, operations to add those literals that follow T in each of H N, clauses
to the head list. Recall that in our implementation, not every node with an interpreted
variable is removed from the trie. Because of this, when the first literal (i.e., T) of a clause
becomes false, adding the next (unassigned) literal of the clause to the head list does not
always take constant time: If the next literal has value false, we have to pass by this literal
and so on, until we find a literal whose value is true or unassigned, or until no literal is
left in the current clause.

That is, if k literals are passed by in the adding process, the complexity of adding the
next literal to the head list will be O(k) and the worst complexity would be O(k * HN,,).
However, if 7 is passed by because y was assigned true earlier, then this 7 is not in the head
list at the time when y was assigned true. Hence, we can distribute the cost of passing
7 to that of assigning y to true (i.e., O(Ny)). After this kind of distribution, the cost of
adding the next literal following each T in the head list is constant.

The case when T appears in the tail list is handled similarly. In short, the cost of
assigning x to true, O(N,), consists of two parts: the cost of visiting each 7 literal in the
head and tail lists and the cost prepaid for passing 7 literals neither in the head list nor
in the tail list. Note that not every T in the clause set has to be visited when assigning z
to true, i.e., O(N;) is a generous upper bound.

The above complexity analysis also applies when z is assigned false. When the set
of clauses is represented by a trie, the number of T literals in the head list, HN,, in the
above analysis can be replaced by the number of the corresponding trie nodes (which is
usually smaller than HN, ). However, we cannot say that the amortized complexity of
assigning z to true is bounded by the number of the trie nodes representing T because,
when assigning x to true, a trie node representing T may be visited more than once while
an occurrence of T is visited at most once when clauses are represented by double-linked
lists.

6 Comparison of LDPP and SATO

While the theoretical analysis shows that SATO’s method has an advantage over LDPP’s,
it also appears to perform better in practice (see Figures 4 and 5). Because it is difficult
to make accurate comparisons across different implementations in different languages, for
purposes of comparison, we also carefully implemented LDPP’s algorithm, which is similar
to Crawford and Auton’s method, in SATO. We discuss below the two key ideas that can
be borrowed from SATO to improve on LDPP: (a) using a trie for clauses; and (b) avoiding
using unit subsumption.
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6.1 Using Trie for Clauses

Using tries can automatically remove some subsumed clauses (including duplicates). LDPP
and Crawford and Auton’s method can take advantage of this. To test this idea, we imple-
mented two versions of LDPP’s algorithm in SATO: in SATO1.2, each clause is represented
by a single linked list of integers; in SATO1.3, the trie data structure is used and each
clause is represented by a path from a leaf to the root of a trie. Figure 6 lists the results
for SATO1.2 and SATO1.3. In terms of branches per second, SAT01.3 is always better
than SATO1.2 because the discrimination tree method automatically eliminates duplicate
clauses. Actually, it automatically deletes a class of subsumed clauses, i.e., those clauses
one of whose prefixes (regarding a clause as a list) is also a clause in the system.

It might appear that creating a trie for a set of clauses would be appreciably more
expensive than creating lists of lists of literals. In fact, both operations have the same
theoretical complexity. In practice, creating a list is slightly faster than creating a trie, as
indicated by the creation times in Figure 6. The creation times for SATO1 and SATO2
are the same as those of SATO1.3.

6.2 Avoiding Unit Subsumption

The Davis-Putnam method performs unit resolution and unit subsumption operations.
These are done in LDPP by decrementing literal counts for unit resolutions and setting an
inactivated flag for unit subsumptions. Every assignment to a variable requires examining
and possibly modifying every clause that contain the variable. A key issue in SATO is that
only unit resolutions are performed, so only occurrences with one polarity or the other are
examined.

This idea can be applied to LDPP by eliminating use of the inactivated field. There
are some extra costs: counts for resolved literals are decremented for subsumed clauses
as well as unsubsumed ones, derived units might already be assigned a (subsuming) value
and must be ignored, and subsumed clauses must be ignored by the process for selecting
literals to split on. Despite these extra costs, there is substantial benefit to omitting the
subsumption operation. LDPP’ is LDPP modified to eliminate the subsumption opera-
tions. As can be seen from Figure 4, it is appreciably faster than LDPP on quasigroup
problems.

7 Conclusions

In this paper, we have concentrated on the use of the trie data structure for implementing
the Davis-Putnam method. Seven implementations of the Davis-Putnam method with
their performance results on some quasigroup problems are presented: DDPP, LDPP,
LDPP’, SATO1, SATO2, SATO1.2 and SATO1.3. Figure 3 summarizes the characteristics
of the different programs described here.

We conclude that:

e The trie representation for clause sets is more efficient than the list representation
(e.g., SATO1.3 vs. SATO1.2).

e Using lists of pointers to occurrences of atoms in clauses and reversible, destructive
updating is faster than using the DDPP’s nondestructive trie-merge operation (e.g.,
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Figure 3: Summary of Program Characteristics

Program Representation How Resolvable Literals Are Found Unit Subsumption

search trie; uses trie-merge operation
DDPP trie instead of destructive operations like yes
the other programs

SATO1.3 trie atom points to clauses that contain it yes
SATO1.2 . . ..

list atom points to clauses that contain it €es
& LDPP P Y
LDPP’ list atom points to clauses that contain it no
SATO1 trie atom points to clauses whose first active no

literal contains it

SATO?2 trie atom points to clauses whose first or last

.. .. no
active literal contains it

SATO1.3 vs. DDPP).

¢ Eliminating the unit subsumption operation can improve performance (e.g., LDPP’
vs. LDPP).

e Restricting the unit resolution operation to operate only on clauses whose first or
last literal contains the atom can improve performance (no single factor comparison
was made, but see SATO2 vs. LDPP’ and SATO1.3; SATO2 vs. SATO1 shows the
benefit of considering first and last literals instead of just first literals).

We have proposed a new method for efficiently implementing unit propagation in the
Davis-Putnam method. We showed that this new method, used in SATO2, is better, both
theoretically and practically, than the approach used in LDPP and many other systems.
That approach appeared earlier in Dowling and Gallier’s linear algorithm for satisfiability
of Horn clauses [6]. We think our ideas can be used to design a new sublinear algorithm
for the satisfiability of Horn clauses.

Many aspects of the Davis-Putnam method are not addressed in this paper. All of our
programs simply choose the first literal in one of the shortest positive clauses for splitting
in the Davis-Putnam method. How to efficiently implement other selection heuristics
using the trie data structure remains a research problem. Qur programs do not perform
subsumption checking; it would be interesting to see how de Kleer’s subsumption algorithm
on tries could be integrated into the Davis-Putnam method. We did little or no checking

12



for pure literals, and did not perform intelligent backtracking or check for symmetries.

3

Further research is needed to see how such operations can be done efficiently using the
trie data structure.
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Figure 4: Quasigroup Problems: DDPP and LDPP

DDPP LDPP LDPP’

Problems | Models Search Search | Search
Branches (sec) | Branches (sec) (sec)

QG1.7 8 353 27 389 34 26

.8 16 97521 9547 101129 15191 3463

QG2.7 14 217 19 205 20 8

.8 2 53410 5275 33835 5591 1358

QG3.8 18 542 35 573 8 )

9 — 26847 2415 24763 445 208

QG4.8 — 564 36 602 7 4

9 194 22491 2188 27479 448 228

QG5.9 - 15 8 15 9 4

.10 — 50 31 38 2 9

A1 5 136 147 125 10 )

12 — 443 660 369 39 15

13 — 16438 27559 12686 1466 639

QG6.9 4 17 5 18 .8 A4

.10 — 65 23 59 2 .8

A1 — 451 238 539 30 11

12 — 5938 4997 7288 501 177

QG7.9 4 9 4 8 .6 3

.10 - 40 17 40 2 .7

A1 — 321 220 294 17 6

12 — 2083 2047 1592 110 38

13 64 61612 86870 34726 2780 1050
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Figure 5: Quasigroup Problems: SATO1 and SATO2

SATO1 SATO2

Problems | Models | Clauses Search Search

Branches (sec) | Branches (sec)
QG1.7 8 11131 413 5 384 1.2
.8 16 28781 136778 4328 102626 387.6
QG2.7 14 11131 598 6 282 1.0
.8 2 28781 153755 3698 37639 187.4
QG3.8 18 17885 514 5 611 2.4
.9 — 28711 20557 321 25300 129.3
QG4.8 — 17885 668 7 557 2.3
.9 178 28711 38733 653 32129 168.3
QG5.9 — 28711 19 1 15 0.2
.10 — 43846 61 3 38 0.6
A1 5 64307 113 11 116 2.3
.12 — 91219 476 69 369 6.9
.13 - 125815 17424 3179 10764  228.4
QG6.9 4 28711 25 1 16 0.3
.10 - 43846 147 6 59 0.7
11 — 64307 583 47 519 6.5
.12 — 91219 7161 953 5728 94.7
QG7.9 4 28711 9 4 9 0.2
.10 - 43846 115 5 93 0.4
11 — 64307 312 30 254 3.2
12 — 91219 1643 258 1281 22.4
.13 64 125815 27111 6039 27988 592.5
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Figure 6: Quasigroup Problems: SATO1.2 and SATO1.3

SATO1.2 SATO1.3

Problems | Models Create Search Create Search

Branches  (sec) (sec) | Branches (sec) (sec)
QG1.7 8 461 1 16 376 1 4
.8 16 97521 3 7524 102610 3 1895
QG2.7 14 759 1 22 340 1 4
.8 2 130690 3 8911 80245 3 1724
QG3.8 18 488 0 3 1072 1 4
.9 — 18474 .2 103 48545 3 286
QG4.8 — 522 0 3 925 1 4
.9 178 35801 1 201 52826 2 316
QG5.9 — 18 N 0 19 .2 .2
.10 — 66 2 1 62 3 1
A1 5 117 1 5 102 1 4
12 — 398 1 17 383 2 15
13 — 13704 2 794 10764 3 604
QG6.9 4 22 1 3 24 2 2
.10 — 144 2 1 150 4 1
A1 — 533 1 16 519 1 6
12 — 6839 1 298 5728 1 239
QG7.9 4 9 N 3 7 2 2
.10 — 75 3 1 54 4 1
A1 — 295 1 10 254 1 8
12 — 1749 1 80 1281 2 56
13 64 27206 2 1696 27989 2 1587
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