22C:44 Midterm Solution

1.

2.

(a)

(a)

Prove that n = o(nlgn).

Solution: We need to show that for every ¢ > 0, there exists an ng > 0 such that 0 < n <
cnlgn for all n > ng. This is equivalent to showing that for every ¢ > 0, there exists ng > 0
such that 0 < 1/¢ < lgn. For each ¢ > 0, pick ng > 2%/¢. Then, for all n > ng, we have that
n > 2'/¢, which is equivalent to saying that lgn > 1 /c.

A simple alternate solution is obtained by using limits.

Let a and b be strictly positive constants. Express the sum

log, n

=3 (3)

i=

in ©-notation as simply as possible. In other words, find an f(n) that is as simple as possible
such that S,, = ©(f(n)). Using your answer, point out the error in my solution to Problem
4(a) in Homework 2.

Solution:
Case1l: a=b S, = Eiozgé’n 1 =0O(logn).

Case 2: a<b -
0 i
(@) <s<3(2)

1 b
1 =
< S < 1-7 b-a
Therefore, S, = O(1).
Case 3: a>b

log, n .
a 3

5= 2 (5)

(%)logb n+1 1

(5) 1

()
()

= O (nlogb afl)]

In the homework solution the cases in which a < b and a > b were not distinguished. However,
they ought to be distinguished since the sums in these two cases are asymptotically different
and as a result the solution to the recurrence in Problem 4(a) is different in these two cases.
When a < b, the solution is T'(n) = ©(n) and when a > b, the solution is T'(n) = ©(n'°%).

Solve the following recurrence for T'(n) using your favorite method.

T(n) = 2T (g) + v,

3.

Assume that the recurrence holds for n > 1 and T'(n) = ©(1) for n < 1.
Solution: Use the Master Theorem. So we have a = 2, b = 4, and therefore n'°% ¢ = nl/2,

Also f(n) = ny/n

=N

3/2.

We now check if Case (iii) applies.

1/2
For any ¢, 0 < € < 1,

n3/2 = Q(n'/?*¢). We now test the regularity condition.

1§ =(G)=2-5- -2 - L

4 4 4 4

This verifies the regularity condition; Case (iii) applies and hence T'(n) = ©(n/n).

(b) Solve the recurrence

T

(n) = % iT(k) +n
k=1

using the substitution method. Assume that the recurrence holds for all n > 1 and T'(1) = 1.
Use T'(n) < cn? for all n > ng as your guess. Identify specific values for ¢ and ng for which

the guess holds.

Solution: Choose ng

=1

Base Case: We need to show that T'(1) < ¢ - 12. Choosing ¢ > T'(1) = 1 ensures this.
Inductive Hypothesis: For all k, 1 < k < n, T'(k) < ck?.
Inductive Step: Substituting the inductive hypothesis in the given recurrence relation we

get

T(n)

IA

3 n—1
— Z ck®+n
n

k=1

3¢ (n(n— 1)(2n—3)> o

For this quantity to be at most ¢n?, we need that

n 6
c
5(n—1)(2n—3)+n
9 c5n+3rz+
cn® — — 4+ —+n
2 2
—5cn+3c+ <0
—+n .
2 2 -

This is true for all ¢ > 1 and n > 1. So choosing ¢ = 1 makes both the inductive case and the

base case go through.

(a) Here is an algorithm that computes y*, given y and z.

Power(y, z) {

if (z ==

0) then

return 1;
else if (Is0dd(z)) then

return Power (y?, [z/2]) * y;
else if (IsEven(z)) then

return Power (y2, [z/2]);

}

Here Is0dd(z) returns True if z is odd; False otherwise. Similarly, IsEven(z) returns True
if z is even; False otherwise.

Analyze the above algorithm to determine the amount of time it takes to compute 5. Do
this by setting up a recurrence and solving the recurrence.

Solution: Let T'(n) be the time the algorithm takes to compute 5”. The following recurrence
is immediate on examining the pseudocode of the algorithm

T(n) =T (g) +O(1).

The recurrence holds for n > 1 and T'(0) = ©(1). This is identical to the “binary search
recurrence” and solves to 1'(n) = ©(logn).

(b) Analyze the following function and determine its running time. Express your answer in ©-
notation.

Strange(n) {
for i «— 1 to n do
if (IsPerfectSquare(i)) then
for j «— 1 to i do
print (i, j);

D W N -

The function call IsPerfectSquare(i) returns True if i is a perfect square (that is, i = 22

for some integer x); False otherwise.

Solution: Lines 1-2 contribute ©(n) to the running time. To calculate the contribution of
Lines 3-4 note that for every perfect square i, 1 < i < n, Lines 3-4 contribute O(i) to the
running time. So the total contribution of Lines 3-4 is }_ ©(i), where the summation is over
all perfect squares i, 1 < ¢ < n. This sum can be alternately written as

Y 0(=*) = 0((Vn)*) = 8(nvn).

Hence the total running time of all the lines is ©(n+/n).

(a) Let X = x1,22,...,2, be a sequence such that z1 > x3 > --- > x,. What is the running
time of following piece of code?

for i «— 1 to n do
INSERT(H, x;);

Assume that His an empty heap before the above code is executed. Briefly justify your answer.
Solution: The running time is O(n).

Explanation: When z; is inserted, H contains ¢ — 1 elements. Placing z; in slot ¢ of H
creates a heap of size ¢ without any rearrangement of the elements. This is because x; is the
smallest element in the heap and is therefore smaller than its parent. So each insertion tales
©(1) time for a total of ©(n) for all the insertions.

(b) Write pseudocode for an algorithm that finds the kth smallest element in an array A[l..n] in
©(nlog k) worst case time. Use the heap data structure to do this.

Solution:

KSmallest(A[1..n]){
1. H < empty heap;

5.

w

~N O O b

for i +— 1 to k£ do
INSERT(H, A[il);

for i —k+1 to n do
if (A[i] < MAX(H)) then{
EXTRACT-MAX (H) ;
INSERT (H) ;

}

return MAX(H);

}

It was not necessary to provide an explanation for why this function takes time ©(nlogk). But,
here it is anyway. Line 1 takes ©(1) time, Lines 2-3 take O(klogk) time in the worst case, Lines
6-7 take O(log k) in the worst case for each execution. Therefore, Lines 4-7 take O((n — k)logk)
in the worst case. Line 8 takes ©(1) time, for a total of ©(nlogk) time, in the worst case.

(a)

Show how the PARTITION function, as described in your textbook, would work on the following
sequence of numbers:
7,8,11,2,18,9,1, 3, 10.

Show how the array would look at the beginning of each execution of the while-loop. Clearly
show where the indices ¢ and j are pointing to.

Solution:
il 7| 8|11 2 |18|9| 1| 3|10
i 8 (11] 2 |18]9 |1 |7|10
31|11 2 [18|98 | 7|10
3012 |115|18]9]8]7]10
3012 |11i|18]9]8]7]10

Suppose that the input QUICKSORT is an array of n elements that contains ¢ distinct elements,
for some positive constant c. Describe how PARTITION would have to be modified so that
QUICKSORT has a worst case running time ©(nlogn).

Notes: You do not have to write pseudocode; write down each modification you would make
to PARTITION and then write a brief explanation as to why QUICKSORT will have a worst case
running time of O(nlogn).

Solution: Start with the PARTITION described in Problem 5, Homework 4 and modify it as follows.

e Start by scanning the array and record in an array B[1..c] each distinct element in A. This

takes O(n) time.

Attempt to partition the array at most ¢ times, using each of the elements B[i], 1 < i < ¢,
as a pivot. Since ¢ is a constant, this amounts to making ©(1) attempts. Each attempt takes
©(n) time, for a total of ©(n) time.

Recall that the PARTITION code described in Homework 4 computes two indices ¢ and 7 such
that A[g+1..r] is the middle block containing elements, all equal to the pivot. Compute the
index that points to the middle of the middle block: |(¢ + r 4+ 1)/2] and check if this index
points to the middle of the whole array (i.e., [(p + s)/2]). If so, the partitioning attempt
stops; otherwise the next distinct element is used as a pivot.

The modified partition returns an index that points to the middle of the array. This means that
the running time of the function is given by the recurrence T'(n) = 27(n/2) + ©(n). This in turn
implies that the running time of the function is ©(nlogn).

