22C:44 Homework 4 Solutions

1. The best case running time for the n insertion operations is ©(n). This happens when each insertion
takes O(1) time.

The worst case running time for the n insertion operations is @(nlgn). First note that the worst
case running time is O(nlgn). This is because each insertion is on a heap with at most n elements
and inserting into a heap with k elements takes ©(lgk) in the worst case. To see that this upper
bound is tight, that is, in the worst case the running time is indeed O(nlgn), consider a sequence
of n numbers in increasing order. The (k + 1)st number is inserted into a heap with k& numbers
and has to be moved all the way to the root of the heap. This takes O(lg k) time. Summing this
over all insertions we get

i O(gk) = G(ilgk =0(g((n—1)!)) = O(nlgn).
k=1 k=1

The last inequality follows from Stirling’s Formula given as equation 2.11 on Page 35 on the
textbook.

We now separately calculate the time it takes to allocate memory using each of schemes described
in the problem.

(a) For every integer k, 1 < k < n, after k insertions, H contains k elements and is full. For the
(k + 1)st insertion, memory allocation takes time ©(k + (k + 1)) = ©(k). Summing this over
all insertions, the total time for memory allocation is

z_: o(k) = @(z—: k) = O(n?)
k=1 k=1

Therefore, the total amount of time, for insertion plus memory allocation is ©(n?) in the best
as well as in the worst case.

(b) Using the second scheme, memory allocation takes place when we have 2¥ elements in the
heap and the heap grows to size 2¥*1. This takes time ©(2% + 2*+1) = ©(2%). This takes
place for all integers k& = 0 through m where m is the largest integer satisfying 2™ < n. In
other words, this happens for all integers k = 0,1,..., [lgn|. Summing ©(2*) over all possible
k we obtain the total time for memory allocation as

] Ign
28 =0() 2¢) =0@"" —1)=0(n).
k=0 k=0

llgn

2. (a) For each 4, the “children” of node 7 are nodes 3i — 1, 3i, 3i + 1. Using this we deduce that the
“parent” of node i is node [(i + 1)/3]. So define children(i) = {3i — 1,3¢,3i + 1}. The heap
property can be stated as, for each i, A[i] > A[j] is j € children(s).

(b) The largest 3-ary tree with height h has all (h + 1) levels full and the smallest 3-ary tree with
height h has the first h levels full and level (h+ 1) containing 1 node. This observation implies
that if a 3-ary tree with height h has n nodes,

3h—1 3t —1

5 +1<n<

This can be rearranged to

2"3—“33hg2n—1



and by taking the logarithm to the base 3 of all terms and simplifying we get
logs(2n+1) — 1 < h < logsz(2n — 1).

This tells that for n = 1, h = 0. This is of course, no surprise! For any n > 1, it is easy to
see that |logs(2n — 1) — (logg(2n+1) — 1)| < 1. This implies that there is a unique integer in
the range [logs(2n + 1) — 1..logs(2n — 1)]. This implies that h = |logs(2n — 1)].

(¢) The number of nodes n and the number of leaves ¢ in 3-ary heaps for all n, 1 < n < 10 are
shown in the table below.

n | ¢
1 1
2 1
3 | 2
4 |3
513
6 |4
715
8 | 5
9 |6
10| 7

It is clear from the table that for every 3 nodes added, 2 node-additions cause an increase in
the number of leaves. This implies that the number of leaves is roughly 2/3rds the number of
nodes. From the table, we get the more precise formula |(2n + 1)/3].

3. (a) Procedures BUILD-HEAP and BUILD-HEAP’ do not create the same heap. The smallest example
has 3 elements in it. Start with the heap 2, 3,8. Calling BUILD-HEAP on this will call HEAPIFY
at 2 and the result is 8,3,2. Calling BUILD-HEAP’ on this will insert 2 first and then 3 into
the heap. After inserting 3, we have the heap 3,2. If we insert 8 into this heap we get the
heap 8,2, 3.

(b) This is shown in Problem 1.

4. 8.1-1 is skipped (too easy!). The solution 8.1-2 is that PARTITION returns |(p +r)/2].

5. BETTER-PARTITION(A, p, s){
q<—p-1, r«p;
for j «— p to s-1 do{
if (A[j+1] == Alg+1]) then{
swap(A, r+1, j+1);
r++;
else if (A[j+1] < A[g+1]) then{
t «— A[j+1];
A[j+1] « Alr+1];
Alr+1] «— A[q+1];
Alg+1] « t;
qt++; r++;




