22C:44 Homework 3 Solutions

1.

(a)

a=>5,b=2 and n'°8? = nl°e25_ f(n) = n2. Since log, 5 > 2 there exists an ¢ > 0 such
that logy 5 — ¢ > 2. Hence n? = O(n!°82°=¢) for some ¢ > 0. Case (i) of the Master Theorem
applies and we get T'(n) = ©(n'°825).

This solution is almost identical to the above solution except that f(n) = n3/2 instead of
f(n) = n? Again Case (i) of the Master Theorem applies and we get T'(n) = ©(n'°825).
Here n'°%a® = n and f(n) = n?lgn. For any ¢, 0 < ¢ < 1, n?lgn = Q(n'*). To apply Case
(iii) of the Master Theorem we need to check the regularity condition also.
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Since a > 1, lga > 0 and hence (Ign —1ga) < lgn. Therefore

1 1
(—) n?(lgn —lga) < <—) n?lgn.
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Since @ > 1, 1/a < 1 and therefore the regularity condition holds and by Case (iii) of the
Master Theorem we have that T'(n) = ©(n?lgn).

Choose ng = 1.
Base Case: We need to show that 7'(1) < ¢- 1. Choosing ¢ > T'(1) will ensure this.
Inductive Step: Our inductive hypothesis is that for all k, ng < k < n, T'(k) < ¢-k. We will
now show that T'(n) < ¢-n. Substituting the inductive hypothesis in the recurrence relation
for T'(n) we get

T(n) <c<z) —}-c(z) +n205—n +n.
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To show that T'(n) < ¢-n it is sufficient to show that ¢5n/6 4+ n < ¢n for some positive ¢. We
see that ¢bn/64+n < cn if ¢ > 6.

Hence the base case and the inductive step will work if ¢ > max{7'(1), 6}.

Choose ng = 2.

Base Case: We need to show that T'(2) > ¢- 21g(2) = 2¢. Choosing ¢ < T'(2)/2 will ensure
this.

Inductive Step: Our inductive hypothesis is that for all k, ng < k < n, T(k) > c¢- klgk.
Substituting the inductive hypothesis into the recurrence relation gives us:

o) = o)) oo ()6 ()

= %[lgn—lg3+2lg2n—2lg3] +n
- %[1gn—31g3+21gn+2] +n

%[3lgn—3lg3+2] +n

2
= cnlgn—cnlg3+ gcn—l—n

To show that T'(n) > cnlgn, it suffices to show that cnlgn —cnlg3 + %cn +n > cnlgn. This
is equivalent to the condition

2
gcn—l—n > cnlg3.



Solving this for ¢ we get
1

TR

Since 1g3 > 1 > 2/3, 1/(1g3 — 2/3) > 0 and hence there is a positive ¢ no greater than this
quantity. Choosing ¢ < min{7'(2),1/(lg3 — 2/3)} will ensure that both the base case and the
inductive step go through.

(¢) Choose ng = 1.
Base Case: We need to show that ¢; -1 < T(1) < ¢3 - 1. Choosing ¢; < T(1) and ¢3 > T'(1)
will ensure this.
Inductive Step: Our inductive hypothesis is that for all k, ng < k < n, c1k < T(k) < cak.
Substituting the inductive hypothesis into the recurrence relation gives us:

c1(an) +n <T(n) < ca(an) +n.

To show that ¢;n < T'(n), it suffices to show that ¢;n < ¢1(an) + n. This is true when
¢1 < 1/(1 — «). Similarly, to show that can > T'(n), it suffices to show that can > ca(an) + n.
This is true when ¢2 > 1/(1 —«). Since o < 1, 1 — > 0 and therefore we can choose positive
1 <min{7T(1),1/(1 — &)} and ¢z > max{7T(1),1/(1 — a)}.

FIND-MISSING(A, n) {
(x Base Case %)
if(n == 1)then

if (A[1] == 1) then return 0 else return 1;

ones < 0; zeroes « 0;
for i «— 1 to n dof{
if (LastBit(A[i]) == 0) then{
zeroes++; Evens[zeroes] <« RestBits(A[i]);

if (LastBit(A[i]) == 1) then{
ones++; 0Odds[ones] « RestBits(A[il);

if (zeroes < [Z1]) then

return Append(FIND-MISSING(Evens, zeroes), 0);
if (ones < [Z£1]) then

return Append(FIND-MISSING(Odds, ones), 1);

}

Explanation: Here it is assumed that lastBit(A[i]) returns the last bit of element A[i],
RestBits(A[i]) returns the bits of A[i] with the last bit removed, and Append (X, b) appends
the bit b to the binary string X.

In the for-loop the last bit of each element in A is examined and we count the number of elements
with 0 as their last bit and the number of elements with 1 as their last bit. These counts, which
correspond to the number of even and odd elements respectively, in A are compared against what
these counts ought to be. Depending on whether an even number is missing or whether an odd
number is missing, we recurse either on the set of even numbers or on the set of odd numbers.

Letting T'(n) be the running time of this function we see that T'(n) = T'(n/2) + ©(n) for all
n > 1and T(1) = ©(1). Simplifying this to T'(n) = T(n/2) + n does not change the asymptotic
value of T'(n) and so that is what we use in the Master Theorem. a = 1, b = 2 and therefore
nlogr® = plog2l — 0 = 1. f(n) = n and therefore we will consider Case (iii) of the Master
Theorem. For any €, 0 < € < 1, n = Q(n¢). The regularity condition 1- f(n/2) < en for some ¢ < 1
is trivially satisfied since f(n/2) = n/2. Therefore Case (iii) of the Master Theorem applies and
T(n) = 0O(n).




