22C:44 Homework 2 Solutions

1. Consider the following “strange” function:

B W N -

Strange(n) {
for i «— 1 to n do
if (n mod i == 0) then
for j «— 1 to n do
print(i, j);

}

Let T'(n) be the running time of Strange(n). While the behavior of T'(n) is strange, its behavior
for certain values of n is easy to predict. For example, when n is a prime, the condition in Line 2
is true only twice, once for ¢ = 1 and once for ¢ = n. Therefore, for any prime n, T'(n) < an for
some constant a > 0. Similarly, suppose that n = 2¥, for some non-negative integer k, then n has
(k + 1) distinct factors 2°,2%,...,2%=1 2% and therefore T'(n) > b-n -k = bnlgn.

(a)

Friend’s Claim: T'(n) = O(n?).

So the friend is claiming that there exist positive constants ng, c1, ca such that ¢;n? < T(n) <
con? for all n > ng. This means that for any prime n > ng, cin? < an. This is equivalent to
saying that for any prime n > ng, n < a/c¢y. Since there are infinite primes, we can pick a
prime n > max{ng,a/c;} that will make this claim nonsense.

Brother’s Claim: T'(n) = O(n).

So the friend is claiming that there exist positive constants ng,c1, ¢z such that ¢;n < T'(n) <
can for all n > ng. This means that for any n > ng that is a power of 2, bnlgn < con. This
is equivalent to saying that for any n > ng, that is a power of 2, Ign < ¢3/b. Now choosing
n > max{ng, 2/} will make this claim nonsense.

Line 1 contains a loop that executes n times and it immediately follows that T'(n) = Q(n). For
any positive integer n, let f(n) be the number of factors of n. Then, Line 1 takes O(n) time,
Line 2 takes O(n) time, Line 3 is executed f(n) times for a total of ©(nf(n)) time, and Line
4 takes ©(nf(n)). Thus the total running time is ©(nf(n)). Since f(n) < n, T'(n) = O(n?).

The recurrence is
T(n)=0(1)+nO1)+T(n—1)]=nT(n—1)+6(n)

for any n > 1 and T'(0) = ©(1).

After 1 iteration the right hand side of the recurrence expands to
Tn)=n[n—1)T(n—-2)+0Mn-1)]+06(n)=n(n—-1)T(n—2)+0(n(n—1))+ 6O(n).
After 2 iterations the right hand side of the recurrence expands to

T(n) = nn—-1)[(n-2)Tn-3)+06(n—-2)]+6(n(n—-1))+06(n)
nn—1)(n—-2)T(n—3)+0(n(n—-1)(n—-2))+6(n(n—1)) + O(n).

After k iterations, the right hand side expands to

Tn) = nn-1)-n—kTh—k-1)+0(nMn—-1)---(n—k))
+ O(nn—1)--(n—(k—=1))+---+0(n(n—1)) +6(n).

Letting k = (n — 1) we get

T(n) = nlT(0)+6(n!)+6O (%) +0 <Z—:> +-+0 <#'2),> +O ((n”i'l)')
nle(1) 4+ 0 <n'nzl 7—1,) :
vkl

Now Z;:Ol 1/i! > 1/0! = 1. An upper bound on this sum can be obtained by recalling that

2 k

P % T
R R S TR
Setting = = 1 gives e = Y. & and therefore Z;’;Ol 1/i! < e. Using these bounds on the sum

we get
T'(n)=0O(n!)+06(n!) =06(n!).

(c) Stranger (A, 1) prints the n! permutations of the sequence stored in array A. When A contains

the sequence 1,2,...,n this is simply the sequence of all permutations of the first n natural
numbers.
3. (a) Merge(A, p, q, 1) {

left <« max{p, r-c+1};
right <« max{q, r+c};
Sort (A, left, right);
}
Here Sort is any sorting function and Sort(A, left, right) takes as input the subarray
Alleft..right] and returns it sorted.

Explanation: From the condition that any pair of “out-of-order” elements A[i] and A[j]
satisfy |i — j| < c it follows that there are at most ¢ elements in A[p..r] that are larger
than some element in A[r+1..q]. Similarly, there are at most ¢ elements in A[r+1..q] that
are smaller than some element in A[p..r]. In the input to Merge, the subarray Alp..r] is
sorted and the subarray A[r+1..ql is sorted. Hence all the elements in Alp..r] that are
larger than some element in A[r+1..q] occur in the subarray A[r-c+1..r]. Similarly, all the
elements in A[r+1..q] that are smaller than some element in A[p..r] occur in the subarray
A[r+1..r+c]. This means that only the 2c¢ elements in the subarray A[r-c+1..r+c] need to
be merged. This can be done by simply sorting this subarray using any sorting technique.
Since ¢ is a constant, this subarray contains ©(1) elements and hence any sorting algorithm
takes ©(1) time to sort this.

(b) The new MergeSort recurrence is 1'(n) = 27°'(n/2) + ©(1) for all n > 1 and T'(n) = ©(1) for
n < 1. Using the iteration method and iterating (k — 1) times expands the above recurrence

to
k—1
_okmp (T i\ _ ok (U k
T(n) =2°T (5;) +© (22) =27 (5) +O (25 - 1),
Choose k such that the conditions n/2%¥ < 1 and n/28~! > 1 are satisfied. This gives
T(n) =0(n)O(1) + O(n) = O(n).

4. Solve the following recurrence relations using the iteration method. For each problem, assume that
T(n) =0(1) for n <1 and T'(n) for n > 1 is given below.

(a) T(n) = aT'(n/b) + ©(n). Here a and b are positive integers. Iterating (k — 1) times and
expanding the right hand side of the recurrence gives

=1 () <0 («3 (5))

Choose k satisfying n/b* < 1 and n/b¥~! > 1. This implies that k satisfies
ngbk<bn logyn < k < logyn + 1.
This also implies that for any =z,
nlogbm S Ik < - nlogb T

We now consider the cases a = b and a # b separately.

Case 1: a = b The above recurrence now simplifies to

n
b

Substituting the inequalities involving k into this we get

T(n) = 0T (3) +O(nk).
T(n) =0(n)O(1) + O(nlogn) = B(nlogn).

Case 2: a # b In this case the above recurrence simplifies to

T =ar(55) +0 (o (5)')-

Substituting the inequalities involving k in the above recurrence we get
T(n) = O O(1)+ O (nlou(@h)
— O(nler9) 1 O(nlo8r @) = O (nloBr @),
(b) T(n) = 5T (n/5) + n?. Iterating (k — 1) times gives the recurrence
k—1

n 1
T(n) = 5T (5—k) +n?y
=0

Choose k satisfying n/5* < 1 and n/5* > 1, note that Zi:ol 1/5° = ©(1), and substitute to
get
T(n) = O(n)0(1) +n?60(1) = O(n?).

(¢) T(n)=T(n/2) +T(n/3) + n. Iterating once yields

T =7 (55) +27 (57) + 7 (35) + (3) n+n

Iterating a second time yields

T =T (25) +97 () +97 () +7 () + (2) s (2) .

Iterating (k — 1) times yields

=3 ()7 () <3 (2)

J

Here (I;) is binomial number that represents the number of ways of choosing j objects from

k objects. Now we use the fact that T'(n) is monotonically increasing to obtain the following
bounds on the summation:
n PN k n PN
k k
(].>T(3_,c)+n§%(6) ST<n>s§%(j)T(ﬁ)+n§%(g) |
1= = 1=

k
Jj=0 J

We now use the fact that Z;“:O (?) = 2* and the fact that
k—1 i oo i
5 5
1< -] < ~-] =6
%) <3 6)

to substitute into and simplify the above inequalities to get:

ok (37—2) +10(1) < T(n) < 2+T (2%) +n0(1).

To simplify the left hand side of the above inequality we chose k such that n/3* < 1 and
n/3*=1 > 1. This implies that n < 3* < 3n and logyn < k < 1 + logy n. This further implies
that n'°8s2 < 2k < 2.nplo8s 2 Substituting into the left hand side of the inequality we get

O(n*%:2)0(1) + O/(n)

To simplify the right hand side of the inequality we chose k such that n/2¥ < 1 and n/2*~! > 1.
This implies that n < 2% < 2n and substituting into the inequality we get

T(n) <O(n)O(1) + nO(1) = O(n).
The fact that ©(n) < T'(n) < ©(n) implies that T(n) = O(n).
T(n)=T(n—2)+ 7. Iterating (k — 1) times yields
T(n)=T(n—2k) + Tk.

Choosing k such that

n—1<k<n+1

and substituting in the above recurrence gives us
T(n) =0O(1) + 7©(n) = O(n).
T(n) =nT(n—1)+ 1. Tterating (k — 1) times yields
T(n)=nn—1)(n—-2)---(n—(k—1)T(n—k) + k.
Choosing k such that n — 1 < k < n yields

T(n) =n!T(1) + n=nlO(1) + n = O(n!).

