22C:44 Homework 1

Due by 5 pm on Tuesday, 2/13

1. Consider the following “strange” function:

Strange(n) {
for i «— to n do
if (n mod i == 0) then
for j «— 1 to n do
print(i, j);

}

(a) [5 points] Your friend who took 22C:44 last semester tells you that the running time of
Strange(n) is ©(n?). Disprove her claim.

(b) [5 points] Your elder brother who took 22C:44 about 3 years ago claims that the running time
of Strange(n) is ©(n). Disprove his claim.

(c¢) [3 points] Use the Big-Oh and Big-Omega notation respectively, to express asymptotic upper
and lower bounds on the running time of Strange (n). Make these bounds as tight as possible.

2. Counsider the following “stranger” function:

Stranger (A[1..n], i){

Define j;

if (i == (n+1)) then
print(A)

else

for j « i ton do {
swap(A, 1, j);
Stranger (A, i + 1);
swap(A, 1, j);

}

Here the calls to swap(A, i, j) swap the elements A[i] and A[j].

(a) [5 points] Assuming that A is an array of n elements and 7 is an integer satisfying 1 <i < n+1,
let T'(n — i+ 1) denote the running time of a call to the function Stranger (A, i). Set up the
recurrence relation for the running time of the function call Stranger (A, 1) for an n-element
array A.

(b) [5 points] Solve the above recurrence and determine the running time of Stranger(A, 1),
asymptotically.

(¢) [2 points] Despite appearances to the contrary, Stranger does something reasonable, espe-
cially when called as Stranger (A, 1) where A contains the sequence 1,2,...,n. Explain in a
sentence what the function Stranger does.

3. Let us investigate the problem of sorting arrays A[l...n] that are known to be almost ordered
initially in the sense that only some elements close to each other may be in the wrong order. More
precisely, there exists a constant ¢ (independent of n) such that whenever two element A[i] and
Alj] are in the wrong order then |j — i| < ¢. Suppose that such an almost sorted array is given as
input to the MergeSort function.



(a) [5 points] Modify the Merge function so that it runs in ©(1) time.

(b) [5 points] Let T'(n) be the running time of MergeSort on an array of size n. Rewrite the
recurrence relation for T'(n) and solve it to determine the new running time of MergeSort in

©-notation.

4. Solve the following recurrence relations using the iteration method. For each problem, assume that
T(n) =0(1) for n <1 and T'(n) for n > 1 is given below.

(a) T(n) =aT'(n/b)+ O(n). Here a and b are positive integers.
(b) T(n)=5T(n/5) +n>.

(¢) T(n)=T(n/2)+T(n/3)+n.

(d) T(n)=T(n—-2)+T1.

() T(n)=nT(n—1)+1.

For Part (a), you may have to consider the cases a > b, a = b, and a < b separately.

Each part is worth 3 points.




