22C:44 Homework 8 Solution

1. The binary tree that represents the Huffman codes for the input is shown below.

The Huffman codes themselves can be read off from this tree and are given in the table below.

110
001100
00111
010
001101
10
0110
0010
111
0111
000

= = BR[O | & O | T

The average number of bits per symbol is 43/11 = 3.90909.



2. The key idea is to choose the next stop greedily by choosing the stop that is farthest from
among all stops that are within 50 miles of the current stop. If we let currentStop and
nextStop denote the current and the next stops respectively, then the “greedy choice”
transalates to choosing nextStop such that A[nextStop|—A[currentStop| < 50 and A[nextStop+
1] — A[currentStop| > 50.

GumpStops(A[1..n] ) {
Afo] = 0;
currentStop = nextStop = 0;
stops = empty set;
while (nextStop < n) do
if (A[nextStop+1] - A[currentStop] > 50) then {
stops = stops U {nextStop};
currentStop = nextStop;
}
else nextStop++;
return stops;

}

Two comments about the algorithm are in order: (i) The end point of the route will not be
reported as a stop by this algorithm and F. Gump should have enough sense to stop and eat
a box of choclates there as well. (ii) It is assumed that there is no portion of the route longer
than 50 miles that is deprieved of stores that sell choclates.

Correctness of this algorithm is established using the following two claims.

Claim 1: There is an optimal solution to the problem in which the first stop is 7, where
i = max{j | Alj] < 50}.

Proof: Suppose there is no such optimal solution. Let J* be some optimal solution and let
7 be the first stop in J*. Clearly, 7 < 7 since the first stop in any solution has to be within
50 miles of the start-point. Replacing j by ¢ in J* gives us yet another optimal solution
contradicting our assumption that there is no optimal solution containing 7.

Claim 2: Let ¢ be the first greedy choice, that is, i = max{j | A[j] < 50}. Let J be an
optimal solution to Gump’s problem in which he starts at stop ¢ rather than at the start
point of the route. In other words, let J be an optimal solution to the problem with input
array of distances B, where B[j] = A[j + 4] for all j = 1,2,...,n — 4. Then J U {i} is an
optimal solution to the orginal problem containing the stop 1.

Proof: Let J' be an optimal solution to the original problem, containing stop i. Then
J' —{i} is a solution to the problem with input B. Therefore, |J| < |J' — {i}| implying that
|J] +1 < |J'| and therefore implying that |J U {i}| < |J'|. This makes J U {i} an optimal
solution to the original problem containing i.

Using induction along with Claims 1 and 2 we immediately see the correctness of the algo-
rithm.

3. For any positive integer k, call the fraction 1/k an Egyptian fraction. The key idea here is
to choose the next Egyptian fraction 1/k greedily by making it the largest Egyptian fraction



no greater than m/n. In other words, 1/k is the largest such fraction satistying 1/k < m/n.
Therefore, k is the smallest positive integer satisfying k& > n/m. By definition of the ceiling
function, this means that k = [m/n].

The pseudocode for the algorithm is given below:

EgyptianNumber (m, n) {

solution = empty set;

while (m > 0) do {
k=] m/n |;
solution = solution U {k};
m=mk - n;
n = nk;

}

return solution;

}

To see that the algorithm eventually terminates note that since 1/k is the largest such fraction
no greater than m/n, we have

<

313

| =

(F=1)

This simplifies to
0<mk—n<m.

At each stage in the algorithm the old dnominmator m is replaced by a smaller non-negative
denominator mk — n. Therefore the denominator eventually shrinks to 0 and the algorithm
terminates. Furthermore, since the denominator decreases by 1 in each execution of the
while-loop and it can only decrease m times, the while-loop executes at most m times. The
amount of work inside the while-loop takes O(1) time and therefore the running time of the
algorithm is O(m).

To show that the algorithm is correct, it is sufficient to show that it terminates, because each
fraction chosen by the algorithm is an Egyptian fraction and when the algorithm terminates
the chosen Egyptian fractions add up to m/n.

. Let Ay xn, = (myj) be an adjacency matrix. If m;; = 1 then there is an edge (i, j) in the graph
and this means that ¢ is not a sink. If m;; = 0 then the edge (4, j) is not present in the graph
and therefore j is not a sink. Testing the value of m;; can be thought of as a comparison
between two potential sinks ¢ and j which eliminates one of them, while the other continues
to be a potential sink. This suggests the following “generic” algorithm to solve the problem.

Start with the pool of all potential sinks. This is of course, all of the n vertices in the graph.
Repeatedly make a comparison between a pair of potential sinks, eliminating a vertex with
each comparison. At the end of n — 1 comparisons (n — 1) vertices have been eliminated and
we have one vertex, say i, left as a potential sink. To determine if 7 is really a sink we check
row ¢ and column 7 in A and if row ¢ has only 0’s and column i has only 1’s (excepting at
m;;) then 7 is a sink.



