Homework 8

22C:44 Algorithms, Fall semester 2000

Four problems, ten points each. Due on Thursday November 16.

1 Find Huffman-code for encoding symbols that have the following frequencies. What is the expected number of bits per symbol using your Huffman code?

Frequency
0.10
0.01
0.04
0.15
0.03
0.20
0.07
0.09
0.11
0.04
0.16

F.Gump is a good runner. He can run up to 50 miles uninterrupted, but then he needs to stop and eat a box of chocolates. He wants to run across America along a certain route. He knows the locations of the stores along the route selling his favorite chocolates. He wants to stop as few times as possible. Design a linear time O(n) algorithm for choosing where to stop, where n is the number of chocolate shops along his route. The input to your algorithm is a sorted array A[1...n] of distances of the chocolate shops from the starting point. The last chocolate shop location A[n] is the end point of the route.

Argue why your algorithm is correct.

3 Let n and m be positive integers with m < n. Then $r = \frac{m}{n}$ is a rational number between 0 and 1. Egyptian number representation of r is a sum

$$r = \frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k}$$

where all n_i are pairwise different positive integers, that is, $n_i \neq n_j$ when $i \neq j$. Write a greedy algorithm that finds an Egyptian number representation for any given $r = \frac{m}{n}$. The input to your algorithm consists of integers n and m, and the output is list $[n_1, n_2, \ldots, n_k]$. Prove that your algorithm works (and halts on every input!) and has worst-case time complexity O(m). Assume that all arithmetic operations can be done in constant time.

4 Exercise 23.1-6, page 468. (Hint: notice that every element of the adjacency-matrix reveals one non-sink node. Namely, if $a_{ij} = 1$ then i is not a sink, and if $a_{ij} = 0$ then j is not a sink. By testing carefully selected n-1 elements of the matrix you should be able to elimate n-1 of the nodes. Then you can easily check if the only remaining candidate is a sink or not.)