ALGORITHMIC VERSION OF L3.

BECK 1991

Given the proof of existence of a certain object via L³, is it possible to efficiently construct it?

k-SAT

The problem k-SAT is the following:-

Input:-A set of classes in disjunctive normal form so that each clause has exactly k literals.

Question:-Is there a satisfying truth assignment to the variables? k-SAT(1)

Input:-Same as k-SAT except that each variable occurs in exactly l clauses.

Question: Is there a satisfying truth assignment to the variables?

Consider k-SAT $(2^{k/50})$ e.g. 100-SAT(4)

Claim:-k-SAT $(2^{k/50})$ is always satisfiable.

Proof:-

To each variable assign at random the value T or F independently and with equal probability.Let C be a clause.

Prob.[C is not satisfied]= $1/2^k$.

Let $A_C = C$ is not satisfied.

 $\text{Prob.}[\bigwedge_C A_C] > 0 = \text{ there is a truth assignment satisfying all clauses.}$

What is d for $\{A_C \mid C \text{ is a clause}\}$?

 $d \le k \cdot 2^{k/50}$

so e.p(d+1) = e. $(1/2^k)(k.2^{k/50}+1) < 1$ for all $k \ge 4$.

Comment: 2-coloring uniform hypergraphs is another context in which Beck's algo. is described.

Is there an efficient algo. to find a satisfying truth assignment for k-SAT $(2^{k/50})$?

We will describe an algorithm that runs in polytime in $m(number\ of\ clauses)$ but not in k.

Implication:-We have a poly-time algo. for k=O(1).

Consider for example: MAX-3SAT(6), which is quite hard to approximate.

ALgorithm:-

Stage 1:

-Order the variables in some arbitrary order.

-Process the variables in this order, assigning to each var. the value T or F with equal prob., except if the var. belongs to a dangerous clause.

A clause C is dangerous if

- i) C has k/2 literals that have been assigned a value.
- ii) C is not satisfied.

At the end of stage 1 we have some satisfied clauses and some surviving clauses. A surviving clause is a clause in which no literal has been

assigned the value T.

Remark:-

A clause may be surviving because all its unassigned variables participate in dangerous clauses.

Let G be the graph whose vertex set is the set of clauses and whose edge set = { { C_1, C_2 } | C_1 and C_2 share a variable }

Note that degree $_G$ ($^{\rm C}$) \leq k . $2^{k/50}={
m d}$

Let $\mathbf{H} = \mathbf{subgraph}$ of \mathbf{G} induced by surviving clauses and unassigned variables.

We can show that with high prob. (1 - O(1)) every connected component of H is $O(\log m)$ in size.

Lemma:-

With prob.(1 - O(1)), every connected component of H is of size <= Z.log(m) for some fixed constant Z.

Proof:-

Let $C_1, C_2, ..., C_r$ be a collection of clauses such that $dist_G$ $(C_i, C_j) \ge 4$ for any $i \ne j$

We will now discuss the prob. that $C_1, C_2, ..., C_r$ all survive stage 1. C_i survives only because some clause in $\{C_i\} \cup N(C_i)$ is dangerous.

Prob. [a clause becomes dangerous in stage 1] = $1/2^{k/2}$.

To each C_i one can associate a clause $D_i \in \{C_i\} \cup N(C_i)$ that becomes dangerous in stage 1.

Prob. [all of D_i s are dangerous] = $(1/2^{k/2})^r$.