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Chebyshev’s Inequality

var[X]

. (1)
Chebyshev’s inequality is an example of a concentration result. The Chernoff-Hoeffding bounds
that we will come up later are much stronger. We shall look at two applications of the Chebyshev’s
inequality:

Pri|X — E[X][ > 1] <

1 Second moment method in number theory
2 Randomized selection algorithm

Application 1
Consider the set {2,6,9,10} and consider the 16 possible subsets. We claim that all the subsets
have distinct sums. The above example can be generalized and stated as a problem below:
Problem: What is the size of the largest subset S C {1,2,...n} that has all distinct sums?
For any subset A of integers, let

s(A)=>"= (2)

zeA
S(4) = {s(X)|X € A} (3)

A is said to have all distinct sums if |S(A4)| = 2/4l. More precisely, we are looking for a natural
number 7 such that there is a S C {1,2,...n} of size f(n) that has all distinct sums, but there is
no larger subset with this property. It is easy to see that logsan is an easy lower bound since the
set § = {20,2% ...2/092n} hag all distinct sums.
Upper Bound
Suppose the largest subset size is k. Clearly 2¥ < kn. Using this and the fact that k < n, we get
the following bound:

f(n) <logan + loga(logan) + 1 (4)

An open problem (with a fair amount of money involved, courtesy Erdos) is whether f(n) <
logon + O(1).

By using Chebyshev’s inequality, we now prove the following theorem. (All logarithms are to the
base 2 unless otherwise specified)

Theorem:

£(n) < log(n) + % ¥ log(log(n)) + O(1) (5)
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Proof: Fix a subset {a1,a2,...a5} of {1,2,...n} that has all distinct sums. Let X1, X5... X} be
independent random variables with Pr[X; = 1] = Pr[X; = 0] = 3. Let X = % , a;X;. Note that
all distinct sums of {a1,as,...ax} can be generated using this. The probability space contains all
distinct sums of {a1,as,...ax} of size 2. Each point is generated with probability 2%
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E[X]ZZGiE[Xi]Zi*ZGi (6)
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Our objective now is to compute the variance.
1k
(BIX])* = 7(3_a)’ (7)
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Denoting var[X] by o, we get o < = Q(k). Hence by Chebyshev’s inequality,
n’k/4 1
Pri|X - BIX]| > ny/(R)] < 5= = 5 (11)

From the above inequality, we conclude that at least 3/4 % 2% sums are contained in the range

(EIX] — ny/(k), BIX] + ny/(R)).

Since at most 2n+/(k) integer sums can lie in this range we have the inequality

3 ok
1 * 2% < 2n\/zk)

Solving this for £ in terms of n, we get the bound claimed in the theorem. O

Application 2: SELECTION

Input Sequence S of n integers and an integer 1 < k < n

Output k£ largest element in S

There exists a deterministic linear time algorithm that does this. However, the algorithm is seldom
used in practice since the constants hidden inside the “big Oh” expression are high. We describe a
randomized algorithm which has the same expected run-time, but is simpler to implement and is
makes fewer pairwise comparisons. Lazy Sort

1 Pick n3/* elements from S independently and uniformly at random with replacement into R.



2 Sort R. Let R; denote the I** smallest element in R. Let 74(g) denote the rank of an element
g in set S.

3 Let ¢ = kn~'/* | = max{|z — \/n|,1}, h = min{[z + v/n],n%*}, a = R; and b = Ry,.
By comparing every element in S with o determine r4(a). Similarly determine r(b).

4 Ik <n'/* then P={y € S|y <b}.
Ifk>n—n'/% then P={yeS|y>a}
Ifke[n'/*n—n"/*, then P={yeS|a<y<b}

5 Check if S, € P and | p |< 4n3/* + 2 otherwise repeat [1] to [3].
6 Sort P and return Py, (a)+1)-

We shall analyze the expected run-time of the above algorithm using Chebyshev’s inequality.



