22C:199 Lecture 6

Scribe: Ganesh Venkataraman

10th September 2003

Chebyshev's Inequality

$$Pr[|X - E[X]| \ge t] \le \frac{var[X]}{t^2} \tag{1}$$

Chebyshev's inequality is an example of a concentration result. The Chernoff-Hoeffding bounds that we will come up later are much stronger. We shall look at two applications of the Chebyshev's inequality:

- 1 Second moment method in number theory
- 2 Randomized selection algorithm

Application 1

Consider the set $\{2, 6, 9, 10\}$ and consider the 16 possible subsets. We claim that all the subsets have distinct sums. The above example can be generalized and stated as a problem below:

Problem: What is the size of the largest subset $S \subseteq \{1, 2, \dots n\}$ that has all distinct sums? For any subset A of integers, let

$$s(A) = \sum_{x \in A} x \tag{2}$$

$$S(A) = \{s(X)|X \subseteq A\} \tag{3}$$

A is said to have all distinct sums if $|S(A)| = 2^{|A|}$. More precisely, we are looking for a natural number n such that there is a $S \subseteq \{1, 2, \ldots n\}$ of size f(n) that has all distinct sums, but there is no larger subset with this property. It is easy to see that log_2n is an easy lower bound since the set $S = \{2^0, 2^1, \ldots 2^{log_2n}\}$ has all distinct sums.

Upper Bound

Suppose the largest subset size is k. Clearly $2^k < kn$. Using this and the fact that k < n, we get the following bound:

$$f(n) < log_2 n + log_2(log_2 n) + 1 \tag{4}$$

An open problem (with a fair amount of money involved, courtesy Erdos) is whether $f(n) < log_2 n + O(1)$.

By using Chebyshev's inequality, we now prove the following theorem. (All logarithms are to the base 2 unless otherwise specified)

Theorem:

$$f(n) < log(n) + \frac{1}{2} * log(log(n)) + O(1)$$
 (5)

Proof: Fix a subset $\{a_1, a_2, \dots a_k\}$ of $\{1, 2, \dots n\}$ that has all distinct sums. Let $X_1, X_2 \dots X_k$ be independent random variables with $Pr[X_i = 1] = Pr[X_i = 0] = \frac{1}{2}$. Let $X = \sum_{i=1}^k a_i X_i$. Note that all distinct sums of $\{a_1, a_2, \dots a_k\}$ can be generated using this. The probability space contains all distinct sums of $\{a_1, a_2, \dots a_k\}$ of size 2^k . Each point is generated with probability $\frac{1}{2^k}$.

$$E[X] = \sum_{i=1}^{k} a_i E[X_i] = \frac{1}{2} * \sum_{i=1}^{k} a_i$$
(6)

Our objective now is to compute the variance.

$$(E[X])^2 = \frac{1}{4} (\sum_{i=1}^k a_i)^2 \tag{7}$$

$$E[X^2] = E[2\sum_{1 \le i \le j \le k} a_i X_i a_j X_j + \sum_{i=1}^k a_i^2 X_i^2]$$
(8)

$$\Rightarrow E[X^2] = \frac{1}{2} * \sum_{1 < i < j < k} a_i a_j + \frac{1}{2} * \sum_{i=1}^k a_i^2$$
(9)

$$\Rightarrow var[X] = \frac{1}{4} * \sum_{i=1}^{k} a_i^2 \le \frac{n^2 k}{4}$$
 (10)

Denoting var[X] by σ , we get $\sigma \leq \frac{n\sqrt{k}}{2}$. Hence by Chebyshev's inequality,

$$Pr[|X - E[X]| \ge n\sqrt(k)] \le \frac{n^2k/4}{n^2k} = \frac{1}{4}$$
 (11)

From the above inequality, we conclude that at least $3/4 * 2^k$ sums are contained in the range

$$(E[X] - n\sqrt(k), E[X] + n\sqrt(k)).$$

Since at most $2n\sqrt(k)$ integer sums can lie in this range we have the inequality

$$\frac{3}{4} * 2^k < 2n\sqrt(k).$$

Solving this for k in terms of n, we get the bound claimed in the theorem.

Application 2: SELECTION

Input Sequence S of n integers and an integer $1 \le k \le n$

Output k^{th} largest element in S

There exists a deterministic linear time algorithm that does this. However, the algorithm is seldom used in practice since the constants hidden inside the "big Oh" expression are high. We describe a randomized algorithm which has the same expected run-time, but is simpler to implement and is makes fewer pairwise comparisons. **Lazy Sort**

1 Pick $n^{3/4}$ elements from S independently and uniformly at random with replacement into R.

- 2 Sort R. Let R_l denote the l^{th} smallest element in R. Let $r_s(q)$ denote the rank of an element q in set S.
- 3 Let $x = kn^{-1/4}$, $l = \max\{\lfloor x \sqrt{n}\rfloor, 1\}$, $h = \min\{\lceil x + \sqrt{n}\rceil, n^{3/4}\}$, $a = R_l$ and $b = R_h$. By comparing every element in S with a determine $r_s(a)$. Similarly determine $r_s(b)$.

$$\begin{array}{l} 4 \ \ \text{If} \ k < n^{1/4}, \ \text{then} \ P = \{y \in S \mid y \leq b\}. \\ \text{If} \ k > n - n^{1/4}, \ \text{then} \ P = \{y \in S \mid y \geq a\}. \\ \text{If} \ k \in [n^{1/4}, n - n^{1/4}], \ \text{then} \ P = \{y \in S \mid a \leq y \leq b\} \end{array}$$

- 5 Check if $S_k \in P$ and $|p| \le 4n^{3/4} + 2$ otherwise repeat [1] to [3].
- 6 Sort P and return $P_{(k-r_s(a)+1)}$.

We shall analyze the expected run-time of the above algorithm using Chebyshev's inequality.