22C:296 Seminar on Randomization

Scribe: Darren Schipper

October 14, 2003

In this class we will talk about the following.

- 1. $\frac{1}{2}$ -way to Turan's Theorem.
- 2. All the way to Turan's Theorem
- 3. Introduction to the second moment method.

Consider two additional examples of the first moment method.

Question: Given a tree T with n vertices, what is the size of the largest independent set in T? Answer: A largest independent set in T contains $\geq \frac{n}{2}$ vertices.

Proof Repeatedly pick a leaf, and throw it in the independent set being constructed, and delete the leaf and its unique neighbor from the tree. In each iteration two vertices are deleted from T and one vertex is added to the independent set being constructed. This shows that the algorithm will pick $\geqslant \frac{n}{2}$ vertices.

Question: Given a planar graph with n vertices, what is the size of the largest independent set in the graph?

Answer: $\frac{n}{6}$. This follows in a similar way from the fact that any planar graph has a vertex with at most 5 neighbors.

To find the common theme in the preceding examples, consider the definition of a d-degenrate graph. This is a graph in which the vertices can be ordered as $v_1, v_2, \ldots v_n$ such that each v_i has at most d neighbors in the subgraph $G[\{v_1, v_2, \ldots v_{i-1}\}]$. For example, a tree is a 1-degenerate graph. Also, we have that a planar graph is a 5-degenerate graph, because by Euler's Theorem, any n-vertex planar graph has $\leq 3n-6$ edges. Hence, there exists a vertex of degree ≤ 5 , which implies that there exists an ordering of the vertices of any n-vertex planar graph as $v_1, v_2, \ldots v_n$ such that each v_i has ≤ 5 neighbors in $G[\{v_1, v_2, \ldots v_{i-1}\}]$. All of this discussion points to the following result.

Theorem 1 Any n-vertex d-degenerate graph has an independent set of size $\geqslant \frac{n}{d+1}$

Seeking generalization, we observe that any *n*-vertex d-degenerate graph has $\leq nd$ edges, and ask whether the foregoing theorem holds for any *n*-vertex graph with $\leq nd$ edges.

1 $\frac{1}{2}$ -way to Turan's Theorem

Theorem 2 Let G=(V,E) be a graph with n vertices and $\frac{nd}{2}$ edges. Then $\alpha(G)\geqslant \frac{n}{2d}$.

For example, if d=2, this implies that we are talking about graphs with n edges. In this case, the theorem implies the existence of an independent set of size $\geqslant \frac{n}{4}$.

Proof Let S be a random subset of vertices chosen as follows: visit each v and independently throw it in S with probability p (p to be fixed later).

Let X_v be an indicator random variable defined as $X_v=1$ if $v\in S$ and $X_v=0$ otherwise. Note that $\operatorname{Prob}[X_v=1]=p$ and hence $E[X_v]=p$. Let $X=\sum_{v\in V}X_v$. This implies that $E[X]=\sum_{v\in V}E[X_v]=np$. Now what is the expected number of edges in the induced subgraph G[S]? For any edge $e\in E(G)$, let Y_e be the indicator variable defined as $Y_e=1$ if $e\in G[S]$ and $Y_e=0$ otherwise. Note that $\operatorname{Prob}[Y_e=1]=p^2$ and hence $E[Y_e]=p^2$. Let $Y=\sum_{e\in E}Y_e$. This implies that $E[Y]=\sum_{e\in E}E[Y_e]=p^2\cdot\frac{nd}{2}$. Hence, $E[X-Y]=np-np^2\cdot\frac{d}{2}$. Now set $p=\frac{1}{d}$. Then $E[X-Y]=\frac{n}{d}-\frac{n}{2d}=\frac{n}{2d}$. This implies that there exists a subset $S\subseteq V(G)$ such that

$$(\# \text{ vertices in } S) - (\# \text{ edges in } G[S]) \geqslant \frac{n}{2d}.$$

So far we have only used the First Moment Method. We now employ the Alteration Method as follows: for each edge in G[S], delete from S one of its endpoints. Let the resulting set be S^* . Hence, $|S^*| \ge \frac{n}{2d}$. Also, note that S^* is an independent set.

2 All the way to Turan's Theorem

Theorem 3 Let G=(V,E) be a graph with n vertices and $\frac{nd}{2}$ edges. Then $\alpha(G)\geqslant \frac{n}{d+1}$.

Proof Choose a permutation of V uniformly at random. Let < ("less than") be the total order on V induced by this permutation. Let $I=\{v\in V|\ \text{for every edge}(v,w),v< w\}$. Note that I is an independent set. Let X_v be an indicator variable such that $X_v=1$ if $v\in I$ and $X_v=0$ otherwise. Let d_v be the degree of v. Then $\operatorname{Prob}[X_v=1]\equiv\operatorname{Prob}[v$ is the" smallest" vertex in its neighborhood] = $\frac{1}{d_v+1}$. Let $X=\sum_{v\in V}X_v$. Clearly, X=|I|. Also note that $E[X]=\sum_{v\in V}E[X_v]=\sum_{v\in V}\frac{1}{d_v+1}$. This implies that there is an independent set I such that $|I|\geqslant\sum_{v\in V}\frac{1}{d_v+1}$. Now, note that $\sum_{v\in V}d_v=2\cdot\frac{nd}{2}=nd$. We have $|I|\geqslant\sum_{v\in V}\frac{1}{d_v+1}$. We minimize $\sum_{v\in V}\frac{1}{d_v+1}$ maintaining $\sum_{v\in V}d_v=nd$ to get $d_v=d$. Hence, $|I|\geqslant\sum_{v\in V}\frac{1}{d+1}=\frac{n}{d+1}$

3 The Second Moment Method

 $E[X^2]$ is the second moment of a random variable X. The variance of a random variable X, denoted var[X] is defined as:

$$var[X] = E[(X - E[X])^{2}].$$

This can be simplified to

$$var[X] = E[X^{2} - 2 \cdot X \cdot E[X] + E[X]^{2}]$$

$$= E[X^{2}] - 2 \cdot E[X]^{2} + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

Chebyshev's Inequality $\text{Prob}[|X - E[X]| \geqslant t] \leqslant \frac{\text{var}[X]}{t^2}$ (this is an example of a concentration result)

Proof
$$|X - E[X]| \geqslant t \equiv (X - E[X])^2 \geqslant t^2$$

Proof $|X - E[X]| \geqslant t \equiv (X - E[X])^2 \geqslant t^2$ $\operatorname{Prob}[|X - E[X]| \geqslant t] = \operatorname{Prob}[(X - E[X])^2 \geqslant t^2] \leqslant \frac{E[(X - E[X])^2]}{t^2} = \frac{\operatorname{var}[X]}{t^2}$ The last inequality above is by applying Markov's inequality.