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From the result we proved last class, we can prove the following result. Let f(k) denote the
size of the smallest tournament with property Sy then f(k) < k?-2%F.In2- (14 o(1)).

First Moment Method

For any random variable X, the quantity E[X¥] is called the kth moment of X. So, in the first
moment method, we will be talking about E[X].
Here are the results we will use:

1. If E[X] < t, then Prob[X <] > 0 (First Moment Principle).

2. If X is a non-negative random variable, then

E[X
Prob[X > t] < % (Markov’s Inequality)
3. Let X1, X5,...,X; be random variables. Let, ci,co,...,c; be scalar constants, then
¢ t
ED> cXi] =) ¢E[X)] (Linearity of Expectation)
i=1 i=1

These results can be easily proved. Consider for example, the following simple proof of the
Markov’s inequality.

E[X] = ) i-Prob[X =i]
)
> > i-Prob[X =1
i>t
> > t-Prob[X =
i>t
= t-Prob[X >{]

This implies that Prob[X > t] < E[X]/t.
In the subsequent classes we will study three applications of the first moment method.

1. k-SAT.



2. Exisence of a high-girth, large-chromatic-number graphs.
3. Turan’s theorem on dominating sets in graphs.

Here is the definition of the k-SAT problem.
INPUT: A boolean formula in CNF such that each clause has exactly k literals.
QUESTION: Is there a truth-assignment to the variables that satisfies all the clauses?
For example, an input to 3-SAT could be

(1 VIa V z4) A (T1 VI VT3).

This is a decision problem. The optimization version of this problem is MAX-k-SAT. This
problem seeks a truth-assignment that maximises the number of satisfied clauses.

Theorem 1 Any instance of k-SAT with less than 2% clauses is satisfiable.

Proof: Construct a random truth assignment by setting each variable (independently) to TRUE
or FALSE with equal probability. Let X; be an indicator random variable defined as: X; = 1
if clause 4 is not satisfied and X; = 0 if clause 7 is satisfied. Let X = >, X;. Then X is the
number of unsatisfied causes and E[X] = E[Y}"; X;] = X, E[X;] (by linearity of expectation). Since
Prob[X; = 1] = 1/2*, we have E[X;] = 1/2* for each clause. Hence,

1
E[X] = o (number of clauses).
If the number of clauses is less than 2¥, E[X] < 1. Therefore, Prob[X < 1] > 0 (by the first
moment principle) and this implies that Prob[X = 0] > 0. Hence, there exists a truth assignment
in which 0 clauses are unsatisfied. O
Here are some closely related results. The proof of (1) is very similar, the proof of (2) is given
below.

1. Consider the CNF formula F = C; ACo A+ A Cp. If 37, 27161 < 1, then F is satisfiable.

2. For any ¢ > 0, there is a simply poly-time algorithm that solves SAT on any CNF formula
on n variables such that each clause has size > ¢ - n.

Proof of (2): If the instance has < 2™ clauses, then, by (1), it is satisfiable. If the instance has
> 25" clauses, then simply check all the 2" truth-assignments since this is polynomial in 25™.

Our second example is on the existence of high-girth, large-chromatic number graphs. First
some notation. For any graph G, we denote by w(G) the size of a largest clique in G and by
X(G) the chromatic number of G. Clearly, x(G) > w(G). Odd cycles are examples of graphs with
x(G) > w(G). Is it possible to construct graphs with small w(G) but large x(G)? We will show
the following theorem.

Theorem 2 For any k there is a graph Gy, such that w(Gy) = 2 and x(Gg) = k.



