22C:296 Seminar on Randomization

Scribe: Shuquan Hou

September 3, 2003

We continue to discuss the basic idea behind the probabilistic method. In the last class, we showed that if $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$ then R(k,k) > n.

Two remarks about the proof:

1. The proof uses the union bound

$$\operatorname{Prob}[\bigcup_i A_i] \le \sum_i \operatorname{Prob}[A_i]$$

Here each A_i is an event and we make no assumptions about the independence of these events.

2. A simple counting argument also shows the same result. The number of 2-color edge-coloring's of K_n is $2^{\binom{n}{2}}$. The number of 2-color edge-coloring's of K_n containing a monochromtic K_k is bounded above by $\binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \cdot 2$. Therefore, if n and k are natural numbers such that If $\binom{n}{2} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \cdot 2 < 2^{\binom{n}{2}}$ then there exists a 2-color edge-coloring of K_n which does not contain a monochromatic K_k . After simplifying $\binom{n}{2} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \cdot 2 < 2^{\binom{n}{2}}$, we get $\binom{n}{k} \cdot 2^{1 - \binom{k}{2}} < 1$.

Corollary 1 $R(k, k) > 2^{\frac{k}{2}}$.

Proof: This is merely algebra. One approach is to simply find n (as a function of k) satisfying $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$. To do this use Stirling's approximation for $\binom{n}{k}$.

Alternately, substitute $n = \lfloor 2^{\frac{k}{2}} \rfloor$ in the above inequality, we get

$$\binom{n}{k} \cdot 2^{1-\binom{k}{2}} = \frac{n(n-1)\cdots(n-(k-1))}{k!} \cdot 2 \cdot 2^{-\frac{k^2}{2}} \cdot 2^{\frac{k}{2}}$$

$$\leq \frac{n^k}{k!} \cdot \frac{2^{1+\frac{k}{2}}}{2^{\frac{k^2}{2}}}$$

$$\leq \frac{2^{1+\frac{k}{2}}}{k!}$$

$$< 1 \ (for \ k \ge 3)$$

Questions: Since $R(k,k) > 2^{\frac{k}{2}}$, if we let $n = 2^{k/2}$, then there is a 2-color edge-coloring of K_n that does <u>not</u> contain a monochromatic K_k . In other words, there is a 2-color edge-coloring of K_n that does <u>not</u> contain a monochromatic $K_{2\log n}$ For example, there is a 2-color edge coloring of K_{1024} that doesn't contain a monochromatic K_{20} . The algorithmic question is how can we efficiently find such a coloring?

Example 2: Tournaments

Definition 2 A tournament is an orientation of the edges of a complete graph. If (x, y) is an edge in the tournament, then we say that x "beat" y.

Definition 3 A tournament is said to have a property S_k , if for every set of k players, there is a player who has beaten them all.

Questions:

- 1. For every k, is there a finite n such that there is a tournament on n vertices with property S_k ?
- 2. If so, what is the smallest n for which this is true? Schülte asked this in 1963 and Erdös provided an easy answer using the probabilistic method.

Theorem 4 If $\binom{n}{k}$ \cdot $(1-2^{-k})^{n-k} < 1$, then there is a tournament on n vertices with property S_k .

Proof: Suppose $\binom{n}{k}$ · $(1-2^{-k})^{n-k} < 1$, construct random orientation of K_n by independently orienting each edge in one of two directions with equal probability. We get probability space $2^{\binom{n}{2}}$ elements with each element has a probability of $\frac{1}{2\binom{n}{2}}$.

Fix a set of k vertices, call this set K. Let \hat{A}_k denote the event that there is no vertex that beats every vertex in K. Let v denote a vertex outside of K.

What is $Prob[A_k]$?

$$\begin{aligned} \operatorname{Prob}[v \; doesn't \; beat \; everyone \; in \; K] &= 1 - (\frac{1}{2})^k \\ &= \operatorname{Prob}[\wedge_p \; v \; doesn't \; beat \; everyone \; in \; K] \\ &= \prod_{v \notin K} \; \operatorname{Prob}[v \; doesn't \; beat \; everyone \; in \; K] \\ &= (1 - \frac{1}{2^k})^{n-k} (because \; of \; independent \; events) \end{aligned}$$

In order to show that $Prob[for\ any\ set\ of\ k\ vertices,\ there\ exists\ a\ vertex\ beats\ them\ all] > 0$, we want to show the following complementary claim $Prob[there\ is\ a\ set\ of\ k\ vertices,\ such\ that\ no\ vertex\ beats\ everyone\ in\ the\ set] < 1$ is true.

Prob[there is a set of k vertices, such that no vertex beats them all] = $\operatorname{Prob}[\lor A_k]$ $\leq \sum_{K:|K|=k} \operatorname{Prob}[A_k]$ = $\binom{n}{k} \cdot (1-2^{-k})^{n-k}$ < 1

Since the complementary claim is true, then we know $Prob[for\ any\ set\ of\ k\ vertices,\ there\ exists$ a vertex beats them all]>0 is true. \Box