22C:199 Applications of Chernoff bounds and an Introduction to Random Walks

Scribe: Ganesh Venkataraman

15th October 2003

In the previous lecture, we had proved the following lemma:

Lemma 1 Suppose H is a directed graph with no parallel edges and the edges have a min-degree x and max-degree y, where $x \geq 1000$ and $y \leq 4x$, then the vertices of H can be colored red and blue such that for every $v \in V(H)$, the number of red out-neighbors of v is in $[\delta^+(v)/2 - (\delta^+(v))^{2/3}, \delta^+(v)/2 + (\delta^+(v))^{2/3}]$ and the number of red in-neighbors of v is in $[\delta^-(v)/2 - (\delta^-(v))^{2/3}, \delta^-(v)/2 + (\delta^-(v))^{2/3}]$. Similar result is true for the blue in-neighbors and out-neighbors as well.

We now need to prove the following:

Lemma 2 Let G be a directed graph with no parallel edges and min-vertex degree $\geq k \geq 1$ and max-degree $\leq 2k$. Then the vertices of G can be colored with $\frac{k}{2^{16}}$ colors, each used so that for each color, the induced subgraph has vertex degree in [a,4a], $a \leq 1$.

Proof: The basic idea is to repeatedly use lemma 2 to get the coloring of $\frac{k}{2^{16}}$ colors. We apply lemma 2 r times where $r = \lfloor log_2k \rfloor - c$. So we get a total of $2^r = 2^{\lfloor log_2k \rfloor - c} \geq \frac{k}{2^{16}}$ colors. Assume c = 15 and $k \geq 2^{16}$. This implies $r \geq 1$. Now, we first check if lemma 2 is valid for the very first time. In the first step, min-degree $= k \geq 2^{16} > 1000$ and max-degree $\leq 2k < 2k$ and hence the lemma holds the first time. Now, let $f(x) = \frac{1}{2}x - x^{2/3}$ and $g(x) = \frac{1}{2}x + x^{2/3}$. Let $z \geq k$ represent the min-degree. Let $x_0 = z$ and $x_{i+1} = f(x_i)$ for $i = 1, 2, \ldots$ Then using some calculations we can show that:

$$x_j \ge \frac{2}{3} (2^{-j}z) \forall j = 1, 2, \dots r$$
 (1)

Let z' represent the max-degree. Let $y_{i+1} = g(y_i)$ for $i = 1, 2, \ldots$ We can show that

$$y_j \le \frac{4}{3} (2^{-j} z') \forall j = 1, 2, \dots r$$
 (2)

Hence, from the above two bounds, we conclude that:

$$y_j \le \frac{4}{3}(2^{-j} * 2k) \le 4 * \frac{2}{3}(2^{-j}z)$$
 (3)

$$\Rightarrow y_j \le 4x_j \tag{4}$$

Hence it is easy to see that for the choice of c = 15, the min-degree and max-degree requirements are satisfied at every level and hence the lemma holds.

Random Walks

Let G = (V, E) be an undirected graph. Let $v_0 \in V$ be chosen arbitrarily as a source of our walk. Random walk is a sequence of vertices v_0, v_1, \ldots where $v_i, i \geq 1$ is chosen from the neighbors of v_{i-1} , uniformly at random independent of all previous choices. (This is a specific case of a random walk). Now we could ask the following questions above the random walk:

- 1. What is the expected time for the walk to visit all the vertices in G?
- 2. Given a particular vertex (say u), what is the expected time to reach u the first time?

Markov's chains are used to answer the above questions related to random walks.

Example of Random Walk

Let $G = K_n$. Let $v_0 \in V(G)$ be a source and let $v \neq v_0$ be an arbitrary vertex in G. What is the expected time by which a simple random walk first visits v. This problem can be solved without using Markov's chain and the number of steps is given by the summation $\frac{1}{n-1} + \frac{2(n-2)}{(n-1)^2} + \frac{3(n-2)(n-3)}{(n-1)^3} + \dots$

Solving 2-SAT using Random Walk

To provide some more motivation for, we now present an algorithm for solving 2-SAT using random walks. Recall that k-SAT is NP-hard for $k \geq 3$, but polynomial time solvable for k = 2.

Randomized algorithm for 2-SAT

- 1. Start with an arbitrary truth assignment
- 2. If there is an unsatisfactory clause, pick one unsatisfactory clause arbitrarily
- 3. Pick one of the two literals in this clause uniformly at random and complement it's value
- 4. Go back to step (2)

Let us assume that the given instance of 2-SAT has a satisfying truth assignment, A. Let T be the current truth assignment. Define correctness (T) as the number of variables that have the same value in A and T. Now it $0 \le correctness(T) \le n$ where n is the number of variables. At each step correctness (T) increases by 1 with probability 1/2. Later, we show that the number of steps needed for correctness (T) to reach it's final values is $O(n^2)$. So we wait for $2cn^2$ steps and then decide whether the given instance is satisfiable or not. Note that this algorithm has a one sided error, since it can never produce declare an instance as satisfiable if it does not have a satisfiable assignment. It could declare a satisfiable assignment as unsatisfiable with finite probability. However, this probability (as we will see later) is quite low.