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In the previous lecture, we had proved the following lemma:

Lemma 1 Suppose H is a directed graph with no parallel edges and the edges have a min-degree

x and maz-degree y, where x > 1000 and y < 4x, then the vertices of H can be colored red

and blue such that for every v € V(H), the number of red out-neighbors of v is in [67 (v)/2 —

(6% (v))%/3, 6% (v)/2+(6F (v))?/3] and the number of red in-neighbors of v is in [6~ (v)/2— (6 (v))%/3,6~ (v)/2+
(6~ (v))?/3]. Similar result is true for the blue in-neighbors and out-neighbors as well.

We now need to prove the following:

Lemma 2 Let G be a directed graph with no parallel edges and min-vertex degree > k > 1 and
max-degree < 2k. Then the vertices of G can be colored with 2% colors, each used so that for each
color, the induced subgraph has vertez degree in [a,4a], a < 1.

Proof: The basic idea is to repeatedly use lemma 2 to get the coloring of 2% colors. We apply
lemma, 2 r times where r = |logok| — ¢. So we get a total of 27 = 2lleg2k]—c > 5’16'6' colors. Assume
¢ =15 and k > 2'6. This implies > 1. Now, we first check if lemma 2 is valid for the very first
time. In the first step, min-degree = k& > 2'6 > 1000 and max-degree < 2k < 2k and hence the
lemma holds the first time. Now, let f(z) = 3z — 22/3 and g(x) = Tz + x2/3. Let z > k represent
the min-degree. Let g = z and z;41 = f(xz;) for i = 1,2,.... Then using some calculations we can
show that:

92 .
zj > 5(273z)Vj =1,2,...r (1)
Let 2’ represent the max-degree. Let y; 11 = g(y;) for i = 1,2,.... We can show that
4
yj§§(2 TZWi=1,2,...r (2)
Hence, from the above two bounds, we conclude that:

4 . 2 .
yj < g(Q_J *2k) < 4« 5(2_Jz) (3)
= Yj S 432]' (4)

Hence it is easy to see that for the choice of ¢ = 15, the min-degree and max-degree requirements
are satisfied at every level and hence the lemma holds. O



Random Walks

Let G = (V,E) be an undirected graph. Let vy € V be chosen arbitrarily as a source of our
walk. Random walk is a sequence of vertices vy, v1, ... where v;,%¢ > 1 is chosen from the neighbors
of v;_1, uniformly at random independent of all previous choices. (This is a specific case of a
random walk). Now we could ask the following questions above the random walk:

1. What is the expected time for the walk to visit all the vertices in G7
2. Given a particular vertex (say u), what is the expected time to reach u the first time?

Markov’s chains are used to answer the above questions related to random walks.
Example of Random Walk

Let G = K,. Let vp € V(G) be a source and let v # vy be an arbitrary vertex in G.
What is the expected time by which a simple random walk first visits v. This problem can
be solved without using Markov’s chain and the number of steps is given by the summation

2(n—2 3(n—2)(n—3
e L L

Solving 2-SAT using Random Walk

To provide some more motivation for, we now present an algorithm for solving 2-SAT using
random walks. Recall that k-SAT is NP-hard for £ > 3, but polynomial time solvable for & = 2.

Randomized algorithm for 2-SAT
1. Start with an arbitrary truth assignment
2. If there is an unsatisfactory clause, pick one unsatisfactory clause arbitrarily
3. Pick one of the two literals in this clause uniformly at random and complement it’s value
4. Go back to step (2)

Let us assume that the given instance of 2-SAT has a satisfying truth assignment, A. Let T be
the current truth assignment. Define correctness(7) as the number of variables that have the same
value in A and T. Now it 0 < correctness(T) < n where n is the number of variables. At each step
correctness(T") increases by 1 with probability 1/2. Later, we show that the number of steps needed
for correctness(T") to reach it’s final values is O(n?). So we wait for 2cn? steps and then decide
whether the given instance is satisfiable or not. Note that this algorithm has a one sided error, since
it can never produce declare an instance as satisfiable if it does not have a satisfiable assignment.
It could declare a satisfiable assignment as unsatisfiable with finite probability. However, this
probability (as we will see later) is quite low.



