22C:296 Seminar on Randomization

Scribe: Shuquan Hou

Oct 1st

Application of Chernoff Bounds (cont'd)

Oblivious routing problem:

Last time we introduced oblivious routing problem and bit-fixing protocol. Today we will continue to work on oblivious routing problem. First we want to show that the bit-fixing protocol performs badly.

<u>Claim</u>: There is an instance of (i, d_i) , $i = 1, 2, \dots, N$, such that $\Omega(\sqrt{\frac{N}{n}})$ time steps are needed for all packets to reach their destinations

Proof: Suppose n is even. Say $b(i) = a_i b_i$, where b(i) denotes the bit-code of node i. $|a_i| = |b_i| = \frac{n}{2}$. Set $d_i = b_i a_i$. Consider path $a_i b_i \implies b_i b_i \implies b_i a_i$, where $b_i b_i$ is an intermediate node on the path from $a_i b_i$ to $b_i a_i$. Fix b_i , for each of the $2^{\frac{n}{2}}$ $a_i b_i$'s the packets originating at node $a_i b_i$ has to pass through node $b_i b_i$. At each time node $b_i b_i$ can at most send $\frac{n}{2}$ packets. This is because of the constraint that each node can send at most one packet to each out-neighbor in each time step. Hence $2^{\frac{n}{2}}$ packets pass through node $b_i b_i$ need at least $\frac{2^{\frac{n}{2}}}{\frac{n}{2}}$ time steps to get their destinations. Since $N = 2^n$, then it at least needs $\frac{\sqrt{N}}{\frac{n}{2}}$ time steps. \square

Randomize bit-fixing protocol

- 1. For each i, pick an intermediate destination σ_i uniformly at random from $1, 2, \dots, N$. Use the bit-fixing protocol to send packet v_i from i to σ_i .
- 2. Use bit-fixing protocol to send packet v_i from σ_i to d_i .

Queueing dicipline

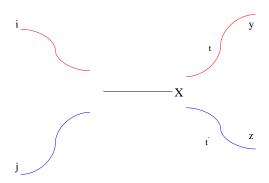
Each node maintains a FIFO queue for each out-going edge. At each step, packet at the front of each queue is sent off. At each step all arriving packets are queued into their out-going edge queue. Ties are broken arbitrarily.

Let phase 1 denote packets travel from i to σ_i . We will first analyze phase 1.

<u>Claim:</u> If a pair of path $i \rightsquigarrow \sigma_i$ and $j \rightsquigarrow \sigma_j$ separates, then they never rejoin.

Proof: Assume node i and j share some nodes until node X. Then two pathes separate from node X. Since two pathes differ from t^{th} bit, then two future pathes differ at least 1 bit, so they

can be same again, then they can't rejoin.

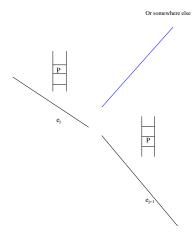


Definition 1 Suppose at time step t, a packet is in a queue on edge e_i , then $t + (\# of elements in the queue before the packet <math>v_i)$ - i is the lag of the packet at time t.

Definition 2 The delay of v_i is the lag at the time at which v_i passes through e_k .

<u>Claim:</u> Let the route of v_i follows the sequence of edges $-\rho_i = (e_1, e_2, \dots, e_k)$. Let S be the set of packets (other than v_i) whose routes pass through at least one of e_1, e_2, \dots, e_k , then the delay of $v_i \leq |S|$.

Proof: What causes the lag of v_i to increase from l to (l + 1)? If v_i 's lag has grown from l to (l + 1), there must be a packet in S whose lag is l at some time. Consider the packet in S whose lag is l last. Let us say $P \in S$, P is the last packet ever to have lag l, has to been at front of queue (otherwise it can't delay v_i or P is the last packet to have lag l). When v_i is from e_j to e_{j+1} , there are three possible cases.



- 1. When P is on edge e_{j+1} , P is the on the top of the queue. If no other packets are behind P, then P can't delay v_i anymore. If there are other packets are behind P, then P can't be the last packet ever to have lag l, so it is impossible.
- 2. When P is on the edge e_{j+1} , P is behind some packets. This is impossible. Because we claim that P is the last packet ever to have lag l.
- 3. P is going other edges which doesn't share any path with v_i

Either case will charge the increase in lag of v_i from l to (l + 1) to this packet P. Overall every packet in S get charged \leq once.

You can also think it in this way. Each packet in S at most get charged at once. Let us say if Packet P delay v_i once, if P can delay v_i again, it must because that other packet Q delays P. So we can charge Q once instead of charging P. From either way we can show that the delay of $v_i \leq |S|$.