22C:296 Seminar on Randomization

Scribe: Shuquan Hou

Oct 1st

Application of Chernoff Bounds (cont’d)

Oblivious routing problem:

Last time we introduced oblivious routing problem and bit-fixing protocol. Today we will
continue to work on oblivious routing problem. First we want to show that the bit-fixing protocol
performs badly.

%

Claim: There is an instance of (i, d;), i= 1, 2, - - -,N, such that Q(
for all packets to reach their destinations

Proof: Suppose n is even. Say b(i) = a;b;, where b(i) denotes the bit-code of node i.
|ai| = |bz| = % Set d; = b;a;. Consider path a;b; ~ b;b; ~ b;a;, where b;b; is an
intermediate node on the path from a;b; to bja;. Fix b;, for each of the 23 a;b;’s the packets
originating at node a;b; has to pass through node b;b;. At each time node b;b; can at most send

5 packets. This is because of the constraint that each node can send at most one packet to each

N .
) time steps are needed

out-neighbor in each time step. Hence 2% packets pass through node b;b; need at least 2= time
2

steps to get their destinations. Since N = 2", then it at least needs ‘/—E time steps. O
2

Randomize bit-fixing protocol

1. For each i, pick an intermediate destination ¢; uniformly at random from 1,2,--- N. Use
the bit-fixing protocol to send packet v; from i to o;.

2. Use bit-fixing protocol to send packet v; from o; to d;.

Queueing dicipline

Each node maintains a FIFO queue for each out-going edge. At each step, packet at the front
of each queue is sent off. At each step all arriving packets are queued into their out-going edge
queue. Ties are broken arbitrarily.

Let phase 1 denote packets travel from i to ¢;. We will first analyze phase 1.

Claim: If a pair of path: ~ o;and j ~ o, seperates, then they never rejoin.
Proof: Assume node i and j share some nodes until node X. Then two pathes separate from
node X. Since two pathes differ from t** bit, then two future pathes differ at least 1 bit, so they

can be same again, then they can’t rejoin.

ﬁ

-
S

O

Definition 1 Suppose at time step t, a packet is in a queue on edge e;, then t + (# of elements
in the queue before the packet v;) - i is the lag of the packet at time t.

Definition 2 The delay of v; is the lag at the time at which v; passes through ey.

Claim: Let the route of v; follows the sequence of edges — p; = (e1, €2, ---,ex). Let S be the set

of packets (other than v;) whose routes pass through at least one of e, e9, -- -, e, then the delay
of v; <|8].
Proof: What causes the lag of v; to increase from [to (I + 1)7 If v;’s lag has grown from [to(l
+ 1), there must be a packet in § whose lag is [at some time. Consider the packet in S whose lag
is I last. Let us say P € S, P is the last packet ever to have lag [, has to been at front of queue
(otherwise it can’t delay v; or P is the last packet to have lag [). When v; is from e; to e;1, there
are three possible cases.

Or somewhere else

1. When P is on edge e;11, P is the on the top of the queue. If no other packets are behind P,
then P can’t delay v; anymore. If there are other packets are behind P, then P can’t be the
last packet ever to have lag [, so it is impossible.

2. When P is on the edge e;;1, P is behind some packets. This is impossible. Because we claim
that P is the last packet ever to have lag l.

3. P is going other edges which doesn’t share any path with v;

Either case will charge the increase in lag of v; from [to (I + 1) to this packet P. Overall every
packet in S get charged < once.

You can also think it in this way. Each packet in § at most get charged at once. Let us say
if Packet P delay v; once, if P can delay v; again, it must because that other packet Q delays P.
So we can charge Q once instead of charging P. From either way we can show that the delay of
V; S|S| a

