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Chernoff Bounds and Applications
Chebysev’s inequality does give a concentration result, but it is very weak. In many applications,
we need stronger results. For example, Let Xi,---,X,, be binary random variables. Let P[X; =
1] = pi, Let X = Y0, X;.

Suppose the X;’s are all mutually independent, from Chebysev’s inequality we get that
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In our case,
E[X] = Y pi=p
VarlX] = Y Var[Xj] = Xn:pi(l — pi)
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Hence, we get
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To simplify this, let the X;’s be identical, i.e., p; = %, for all 1 =1,---n. Then,
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If ¢t = du, then the above inequality becomes
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This probability approaches 0 as n — oo but does so only linearly.

For this very example, using Chernoff bounds, we can show an upper bound that grows expo-
nentially as n — oo.

The other reason it is important to show such a tight bound is that often the Chernoff bound
is used before applying the union bound on an exponential number of events. We should still be
able to conclude that the total probability is < 1.



Chernoff Bounds : As before, let X1, - X, be binary random variables such that P[X; =
1] = p;, and let X =37 X;.
Suppose the X;’s are mutually independent, then the Chernoff bound says that :
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Example : Suppose the X;’s are all identical, and P[X; = 1] = %, then by Chernoff bounds, we
get
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Then, for § > 2e — 1, we get
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Proof of Chernoff Bounds :
For any positive t, X > (1 +8)u = e'* > ef1+0u,
Therefore,

PIX > (1+8)u] = Pl > e!1+)1]

by Markov’s inequality. The RHS is bounded above by
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= 0L, by mutual independence of X;’s

PIX > 1+ <

Ele"™] = (1 —pi) + 'p;.
Therefore,
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Now, using the fact that e* > (1 + z), for z # 0,
we get that
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To get the tightest possible upper bound, we find a ¢ that minimizes the RHS. This we get by
differentiating the RHS. The minimal value of ¢ thus found is ¢ = In(1 + §). Now substituting, we
get the desired result.

Remark : A similar result can be shown for P[X < (1 — &)p].

In this case, the Chernoff bound gives us :
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Applications :
e Oblivious permutation routing in a network

e Existence of a edge-disjoint cycles in d-regular digraphs (using the semi-random technique,
or Rodl’s nibble).



