
22C:21 Lecture Notes

Run-time analysis and the “Big Oh” notation

Aug 26, 2005

Example 4. Linear Search.

i = 0;

while((key != data[i]) && (i < n))

i++;

Here n is the number of slots in the array data that we wish to search. It therefore represents
the input size. The boolean condition and the increment statement each take constant time.
Therefore the running time of the code fragment is linear (in n) in the worst case. Note that
the running time is not always linear in n; key may be in the first slot all the time and in such
cases the running time is just constant. Therefore, it is important to add the qualifier “in worst
case.”

Example 5. Binary Search.
Often we can assume that the array of items we have been asked to search is sorted in some way.
We can take advantage of this assumption to come up with a much more efficient search.

The main idea is that we look for key in the middle of the array. If we find it there we are
done. If key is less than the middle we only need to search the first half. If key is more than the
middle we only need to search the second half.

first = 0;

last = n-1;

found = false;

while (first <= last) && (!found)

{

mid = (first + last)/2;

if (key == data[mid])

found = true;

if (key < data[mid])

last = mid-1;

if (key > data[mid])

first = mid+1;

}

We will do a worst case analysis of the code. In other words, we will assume that key is not
to be found and the while-loop terminates only when (first > last). The code fragment before
the while-loop runs in constant time. Also, the code fragment inside the loop runs in constant
time. Therefore the worst case running time of the code fragment is

A + B · f(n),

where A and B are constants independent of n and f(n) is the number of times the while-loop
executes, in the worst case. The fact that this is a function of n is explicitly denoted by its form.
To compute f(n) consider the following table.

1



Number of times size of array
the while loop to be examined
has executed (last − first + 1)
0 n
1 n/2
2 n/4
. .
. .
. .
i n/2i

When does the size of the array to be examined become 1? When n/2i = 1, that is when 2i = n,
that is when i = log2(n). After last− first + 1 = 1, it takes just one more execution of the loop
to get to first > last. So the worst case running time of the code fragment is logarithmic.

Logarithmic functions (review) If ab = x, then b = loga(x). So, as in the previous example,
if 2i = n, then i = log

2
(n). The function log

2
(n) grows very slowly as compared to the linear

function, n. For illustration, consider this table.

n log
2
(n)

2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Even when n exceeds a million, log
2
(n) is still at 20. This means that even for a million element

array, binary search examines (in the worst case) about 20 elements!

“Big Oh” notation
Our run-time analysis aims to ignore machine-dependent aspects of the running time. For
example, when we showed that the running time of a code fragment was A ·n+B, we don’t care
about the constants A or B because these depend on the machine. We simply focus on the fact
that the shape of the function A · n + B is linear. In other words, we “approximate” A · n + B
by n. The “Big Oh” notation permits a mathematically precise way of doing this.

Definition: Let f(n) and g(n) be functions defined on the set of natural numbers. A function
f(n) is said to be O(g(n)) if there exists positive constants c and n0 such that for all n >= n0,
f(n) <= c · g(n).

2



Informally speaking, f(n) is O(g(n)) if there is a multiple of g(n) that eventually overtakes
f(n).

n

f(n)

c g(n)

c g(n)

f(n)

n
0

Figure 1: f(n) = O(g(n)) because there are positive constants c and n0 such that f(n) ≤ c ·g(n)
for all n ≥ n0.

Example 1. Show that 5n + 20 = O(n).
To see this, let c = 6. At what point does 6n overtake 5n + 20? This happens at 6n = 5n + 20.
In other words, at n = 20. So for all n >= 20, 6n >= 5n + 20.

Example 2. Let A and B be arbitrary constants, with A > 0. Show that An + B = O(n).
Let c = A + 1. Then, we observe that (A + 1) · n >= An + B, for all n >= B. This example is
telling us that whenever the running time of an algorithm has the form An + B, we can simply
say the running time is O(n).

Example 3. Show that 8n2 + 10n + 25 = O(n2).
As in the previous examples, let us select c = 9. We need to ask, when does 9n2 start overtaking
8n2 + 10n + 25?

9n2
≥ 8n2 + 10n + 25

n2
≥ 10n + 25

(n − 10) · n ≥ 25

Now note that at n = 12, the left hand side (LHS) = 12 and the above inequality is not satisfied.
However, at n = 13, the LHS = 39 and the inequality is satisfied. Furthermore, LHS is an
increasing function of n and therefore the inequality continues to be satisfied for all larger n as
well. In summary, we can set c = 9 and n0 = 13.

Example 4. Show that 8n2 + 10n + 25 is not O(n).
To obtain a contradiction suppose there are constants c and n0 such that

8n2 + 10n + 25 <= cn for all n ≥ n0.

Clearly, c has to be larger than 10. So let us assume this. Then, the above inequality implies

8n2 <= (c − 10)n − 25 for all n ≥ n0.

Now pick n = k(c − 10) where k is a natural number such that k(c − 10) ≥ n0. Then the
LHS = 8k2(c − 10)2 and the RHS = k(c − 10)2 − 25. Clearly, the LHS is larger than the RHS
- a contradiction.

3


