
22C:21 Lecture Notes

Run-time analysis

Aug 24, 2005

The goal of run-time analysis is to obtain a “pen and paper” estimate of how efficient an algorithm
or a program or a data structure is.

Suppose A and B are two different programs that sort a given sequence of integers. You
run A on a machine on a certain input and it completes in 2 seconds. You friend runs B on a
different machine, on some input of her choice, and comes back reporting that B completed in
0.001 seconds. Can you conclude that B is much more efficient than A?

No. Because the running time of programs typically depends on the size of the input and
A and B may have been run on inputs of different sizes. Furthermore, the machines on which
these programs are run may have significantly different speeds.

Of the two factors mentioned above: input size and machine speed, run-time analysis focuses
on the first and ignores the second. More precisely, the goal of run-time analysis is to obtain a
machine independent estimate of the running time of an algorithm or a program as a function
of the size of the input.

Example 1.

for(i = 0; i < n; i++)

sum = sum + i;

Here n is the input. The above code can be expanded to

1. i = 0

2. if i >= n then goto line 6

3. sum = sum + i

4. i++

5. goto line 2

6.

Assuming that on some hypothetical machine, line i takes ci units of time, then the total running
time of the above code equals

c1 + c2(n + 1) + c3n + c4n + c5n = n(c2 + c3 + c4 + c5) + (c1 + c2).

Note that this has the form An + B, where A and B are constants (i.e.,independent of n). Such
a function is called a linear function. We say that this code fragment has linear running time.
The constants A and B are machine dependent and we ignore them. Instead we focus on the
fact that the running time grows linearly with respect to n.

Example 2.

for(i = 0; i < n; i++)

{

sum = sum + i;

prod = prod*(i+1);

}

Again, here n is the input. The statements inside the for-loop still take a constant amount of
time. Therefore, as in the previous example, this code fragment also has linear running time.

1



Example 3.

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

sum = sum + i * j;

This code can be expanded as

1. i = 0

2. if (i >= n) goto 6

3. INNER LOOP

4. i++

5. goto 2

6.

We know that the INNER LOOP takes linear time, i.e., An + B for some constants A and B.
Assuming that the each line i other than line 3, executes in time ci, we get that the total running
time is:

c1 + c2(n + 1) + (An + B)(n) + c4n + c5n = An
2 + (c2 + B + c4 + c5)n + (c1 + c2).

This has the form Xn2 + Y n + Z, where X, Y , and Z are all machine-dependent constants.
This is a quadratic function in n and the code fragment is said to run in quadratic time. The
constants X, Y , and Z are not important, what is important is the fact that the running time
of the code fragment grows quadratically with respect to n.

2


