The queue class

O

Remember searchWordNetwork

O

def searchWordNetwork(source, target, D):

processed = {source:0}
reached = {}
for e in D[source]:
reached[e] = source # the value in the dictionary of a key k is the "parent" of k

Repeat until reached set becomes empty or target is reached
while reached:
Check if target is in reached; this would imply there is path from source to target
if target in reached:
processed.update({target:reached[target]}) /
return processed

Pick an item in reached and process it k
item = reached.popitem() # returns an arbitrary key-value pair as a tuple
newWord = item[0]

parent = item[1]

Find all neighbors of this item and add new neighbors to reached
processed[newWord] = parent
for neighbor in D[newWord]:
if neighbor not in reached and neighbor not in processed:
reached[neighbor] = newWord

return {}

If we pull out the “oldest” item from reached, we will
be guaranteed to get a shortest path.

Nodes are inserted into reached in some order — the
order in which they are reached by the exploration
algorithm. So we have a notion of how long each
item has been in reached.

The network exploration algorithm with this feature
is called breadth-first search.

So we need a data structure that maintains a collection of items and
supports the following operations:
enqueue: inserts the given item into the data structure

dequeue: deletes from the data structure the element that was inserted earliest and returns
this element.

Example:

>»> Q = queue()
>>> Q.enqueue(10)
>>> Q.enqueue(20)
>>> Q.enqueue(11)
>>> Q.dequeue()
10

>>> Q.enqueue(10)
>>> Q.dequeue()
20

This is called a First-in First-out (FIFO) data structure.
Also called a queue data structure.

How to implement this data structure?

We'll discuss a list-based implementation and a
dictionary-based implementation.

GOAL: To ensure that both operations (enqueue and
dequeue) run in constant number of rounds,
independent of the length of the queue.

List-based implementation

O

class queue():

Constructs an empty queue
def init (self):
self.L =[]

Enqueue appends items at back of list
def enqueue(self, item):
self.L.append(item)

Dequeue removes items from front of list. This method is not efficient
def dequeue(self):

item = self.L.pop(0)

return item

Shows the queue as a list
def _ repr__ (self):
return str(self.L)

Let us keep an index called start that will always
point to the first (earliest) element in the list.

So we do not explicitly remove elements from the list
in response to dequeue; instead we simply move
start.

Now both enqueue and dequeue are quite efficient.

class queue():

Constructs an empty queue
def _ init_ (self):
self.L =]
self.start = -1 # initialize start to point to before the first valid index

Enqueue appends items at back of list
def enqueue(self, item):
self.L.append(item)
If the queue was empty prior to this insertion, update start
if self.start == -1:
self.start = self.start + 1

Dequeue removes items from front of list. This method is not efficient
def dequeue(self):

self.start = self.start + 1

item = self.L[self.start - 1]

return item

Shows the queue as a list
def __repr__ (self):
return str(self.L[self.start:])

Queue is empty is there if the list if physically empty
or start points to the end of the list
def isEmpty(self):

return len(self.L) == o or self.start == len(self.L)

...even this implementation has a problem.

We may have a very large self.L even though the
queue may have very few elements.

Thus we have traded off space (memore) for time
(speed).

