Binary Search
O

One of the most common computational problems
(along with sorting) is searching.

In its simplest form, the input to the search problem
is a list L and an item k and we are asked if k belongs
to L. (The in operator in Python.)

In a common variant, we might be asked for the

index of k in L, if k does belong to L. (The L.index()
method in Python.)

Searching lists

» Python provides several built-in operations for
searching lists:
elem in L: evaluates to True if elem is in list L

L.index(elem): returns the index of the first occurrence of elem
in L; is an error if elem is not in L.

L.count(elem): returns the number of occurrences of elem in L.

» Other related operations:

min(L), max(L): these return the minimum element and
maximum element respectively of L.

If we don’t know anything about L, then the only way to solve the
problem is by scanning the list L. completely in some systematic
manner.

This takes time proportional to the size of the list, in the worst case.
And for this reason, this is called linear search.

Linear search can be quite inefficient for many applications because
search is such a common operation in programs.

The Python search operations mentioned in the previous slide all
perform linear search because they are expected to work on any list.

If the list L is known to be sorted (in ascending or
descending order), then we can use a much more
efficient algorithm called binary search.

Binary search is so much more efficient than linear
search that it provides a significant incentive to keep
lists sorted.

More on the efficiency of binary search later.

Suppose that L is sorted in ascending order.

Compare k with the middle element of L.
If k == L[middle], we are done
If k < LImiddle], we need to search the first half of L
If k > L[middle], we need to search the second half of L

Notice that after one comparison, the size of the
problem shrinks to 12 of what it was earlier.

(Compare this with linear search where after one
comparison, the problem size reduced by just 1
element.)

Explicitly maintain two indices left and right.

The sublist L[left..right] (inclusive) is what still
remains to be searched.

Initially, left is 0 and right is len(L)-1.

Since we are interested in comparing k with the
“middle” element, we maintain a third index called
mid (set to (left + right)/2).

After one comparison, either we find k or we look for
it in the left half (right = mid -1) or in the right half
(left = mid + 1).

The function binarySearch

def binarySearch(L, k):
left =0
right = len(L)-1

iterate while there is a sublist that needs to be searched
while left <= right:
mid = (left + right)/2 # index of the middle element

Comparisons and then adjusting the boundaries of
the sublist, if necessary
if L[mid] == k:
return mid # element is found at mid, so return this index
elif L[mid] < k: # look for element in right half
left = mid + 1
elif L[mid] > k: # look for element in the left half
right = mid -1

return -1 # element is not found in the list

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 65)
Slices searched:

07

47

67

77
Not found

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 4)
Slices searched:

07

02

Found

Assume the worst case, i.e., we don’t find k.

After each comparison of k with L[mid] the problem size
shrinks to /2 of what it was before the current iteration.

Problem Size Number Iterations Completed
N 0
N/2 1
N/22 2
N/23 3

Thus after t iterations have been completed, the
problem size has shrunk to N/2t.

Therefore, for the problem size to shrink to 1, we
need
N =2t

t =log, N

Thus the worst case running time of binary search is
logarithmic in the size of the list.

Problem: If we sample N times uniformly at
random from the integers {1, 2, 3,..., N}, how many
distinct elements will we get?

Statisticians are interested in these kinds of
questions.

It is easy to write a simple Python program to get a
sense of this.

import random

L=1]
for i in range(50000):
L.append(random.randint(1,50000))

count = 0
for e in range(1, 50001):
if einlL:
count = count + 1

print count

Time to build list is 0.129420042038
31733
Time to count distinct elements is 45.7874200344

import random
from binarySearch import *

L=1]
for i in range(50000):
L.append(random.randint(1,50000))

L.sort()

count =0
for e in range(1, 50001):
if binarySearch(L, e) >= O:
count = count + 1

Time to build list is 0.125706195831
Time to sort list is 0.0273258686066

31717
Time to count distinct elements is 0.3523209095

