Selection Sort

O

Sorting and searching are the two most commonly
performed operations by computer programs.

You might have seen sorting in the context of
spreadsheets, where we want to sort by a certain
column.

Sorting occurs commonly in more complicated
contexts as well — graphics programs might maintain
collections of polygons in 3-dimensional space in
“sorted” order so as to render scenes efficiently.

» Since sorting is such a common operations, there are many known
sorting algorithms.
(Quick sort, Merge sort, Heap sort, Selection sort, Insertion sort,

Bubble sort, Shell sort,...)
» Today we will study the selection sort algorithm.

» This will serve three purposes:
Provide an introduction to a fundamental computational task
Provide more clues to Homework 4.

Reiterate that lists are different from all other data types we have seen thus far due to a
property called mutability. We have discussed this issue in the previous lecture.

« Itis worth pointing out that selection sort is terribly inefficient and you
should not use it in general. We'll also study some of the more efficient

sorting algorithms — e.g., quick sort, later.

The Selection Sort Algorithm

O

o L is the list we want to sort. Let n = len(L).

e In iteration 1,

we find a smallest element in L[O..n-1] (i.e., the entire list) and
“swap” it with the first element (L[O]) in L.

Thus after iteration 1, L[O] has its final value. We can now
work on L[1..n-1].
 In iteration 2,

we find a smallest element in L[1..n-1] and “swap” it with the
second element (L[1]) in L.

Thus after iteration 2, L[0..1] has its final values.

» Thus after i iterations, the prefix of the list L[O..i-1]
has its final value.

 In iteration 1+1,
we find a smallest element in L[i..n-1] and “swap” it with L[i].
Thus after iteration i+1, L[O..i] has its final value.

» We will be done after n-1 iterations.

def selectionSort(L):
n = len(L)
index = 0

while index < n-1:
Finds the index of a smallest element in the range L[index..n-1]
m = minIndex(L, index)

Bring this smallest element to the "front" by swapping L[m] and
L[index]

swap(L, index, m)

index = index + 1

Finds and returns the index of a smallest element in the range L[lowerBound..len(L)-1]
def minIndex(L, lowerBound):

Initializations: we assume that the first elemnt in L[lowerBound..len(L)-1]

is smallest.

minElement = L[lowerBound]

indexOfMin = lowerBound

We then process the rest of the range starting from L[lowerBound+1]
index = lowerBound + 1
while index < len(L):
if L[index] < minElement:
minElement = L[index]
indexOfMin = index

index = index + 1

return indexOfMin

The function swap

O

Note that the function swap does not return
anything.

It communicates with selectionSort by modifying
the list L in-place and having this effect be felt
“outside.”

This type of communication between functions is
possible because lists are mutable.

It is easy to time selectionSort using the time
module.

Checkout timeSelectionSort.py on the course page.

We generated random length-n lists for n = 1000,
2000,..., 10000.

For each n, we generated 100 such lists and averaged
the running time of selection sort over 100 runs.

Timing Selection Sort

O

