The Word Ladders Game
O

This is a word game invented by Lewis Carroll in
1877.

You are given two words on the same length, e.g.,
“cold” and “warm.”

Your task is to find a chain of words from the starting
word (“cold”) to the ending word (“warm”™) so that
each successive word differs from the previous in
exactly one letter.

Example: “cold”, “cord”, “card”, “ward”, “warm.”

Donald Knuth, a Turing award winning computer
scientist created a file of 5,757 5-letter words. These
were all valid 5-letter English words at the time at

which the file was created.
I have posted this file: words.dat

Our problem is to write a program that reads two 5-
letter words and plays the word ladders game.

Enter the first five-letter word for the Ladders game (O to quit): about
Enter the second five-letter word for the Ladders game (O to quit): house
Here is the word chain from about to house:

about

abort

aport

sport

spurt

spurs

sours

tours

touts

routs

route

rouse

house

High-level Plan

* Step 1:

We will build a word network. This is the collection of 5-letter words
with pairs of words that differ in exactly letter, connected by an
“edge.”

* Step 2:

Given a pair of words wordl and word2, we will “explore” the word
network, starting at wordl and try to find a path in the network from
word1 to word2.

» We will work on Step 2 later. We will first solve Step 1 in
a couple of ways. First using lists and then using
dictionaries.

» The word “house” is connected by an edge to each of
these seven 5-letter words:
douse, horse, louse, mouse, rouse, souse, youse.

» The word “fails” is connected by an edge to each of
these fourteen 5-letter words:

bails, fairs, falls, foils, hails, jails, mails, nails, pails, rails,
sails, tails, vails, wails.

We will write a boolean function called
areNeighbors that takes two words and
determines if they are “neighbors” (i.e., differ in
exactly one letter).

We will write code to read from the file of 5-letter
words (called words.dat) and store the words in a
word list.

We will then build the word network.

We will use a list called wordList to store the list of words (in the
order in which we read them from words.dat).

We will create an additional data structure — a list of lists, called
neighborsList such that if a word w occurs in wordList in
position i then all its neighbors are stored as a list, in position i,
in neighborsList.

For example, “fails” appears in position 1,622 in wordList. So
neighborsList[1622] equals ['bails’, 'fairs’, 'falls’, ‘foils’,
"hails®, "jails’, ‘'mails’, "nails’, "pails’, 'rails’, 'sails’, "tails’,
‘vails', 'wails']

Two words are neighbors if they differ in exactly on letter.

This function returns True if a given pair of words are neighbors
It is assumed that the two words have the same length.

def areNeighbors(wl, w2):

count = O
for i in range(len(wl)):
if wili]l= w2[i]:

count = count +1

return count ==1

Main program
fin = open("words.dat", "r")

Loop to read words from the and to insert them in a
list
wordList = []
for word in fin:
newWord = word.strip("\n")
wordList.append(newWord)

fin.close()

Building neighborsList

O

