Improving our first program

O

n = int(input("Enter a positive integer:"))
while n > O:

print(n 7% 2)

n=n//2

Line 1

while boolean expression:
Line 2
Line 3

Line 4

while-loops affect the flow of the program, i.e., the order in which
program statements are executed.

For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4

Lines 2 and 3 form the body of the while loop

Python uses inc
following the w.

entation to identify the lines
nile statement that constitute the

body of the whi

e loop.

n = int(input("Enter a positive integer:"))
while n > O:

print(n % 2)

n=n//2

Suppose n has value 35 initially.
Then the sequence of values that n takes on is:
359 17) 87 49 2) 17 O'

When the value of n becomes 0, then the boolean
expression in the while-statement becomes false and the

while-loop ends.

n = int(input("Please type a positive integer: "))

count =0 # Initialization. It is easy to forget this.
while count < n:

print(count)

count = count + 1

print("Done")

What is the output if the user types 10 in response to the
prompt?

n = int(input("Please type a positive integer: "))
while n > O:

print(n)

n=n-1

print("Done")

What is the output if the user types 10 in response to the
prompt?

n = int(input("Please type a positive integer: "))

total =0 # Initially the total has value O
while n > O:

total = total + n

n=n-1

print(total)

What is the output if the user types 10 in response to the
prompt?

n = int(input("Please type a positive integer: "))

product =1 # Initially the product has value 1
while n > O:

product = product * n

n=n-1

print(product)

What is the output if the user types 10 in response to the
prompt?

The current program generates bits one by one in the
wrong order!

How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

String concatenation!
Expression Value

"0" + "1001" “01001"
“1" + "1001" “11001"

After i iterations of the while loop we have generated
the right most 1 bits of our answer.

Call this the length-1 suffix.

We want to maintain a string that grows as:

» » »

Input is 39.

Output
1

L, OO0 K-

Suffix

wu

nqu
nqqm
“111"
"0111"
“00111"
*100111"

n = int(input("Enter a positive integer:"))
suffix = "
while n > O:
suffix = str(n % 2) + suffix
n=n//2
print(suffix)

Now suppose that we want a more informative output message:

The binary equivalent of 39 is 100111

Will this work?

n = int(input("Enter a positive integer:"))
suffix = "
while n > O:
suffix = str(n % 2) + suffix
n=n//2
print("The binary equivalent of “, n, " is ", suffix)

n = int(input("Enter a positive integer:"))
suffix = ""
originalN = n
while n > O:
suffix = str(n % 2) + suffix
n=n//2
print(" The binary equivalent of", originalN, "is", suffix)

