
F E B 9 A N D 1 1 , 2 0 1 5

Random Walks and Defining
Functions

If we take a random walk, will we go places?

�  Problem: Simulate a random walk in which a
person starts of at point 0 and at each step randomly
picks a direction (left or right) and moves 1 step in
that direction.

�  Take as input a positive integer n and terminate the
simulation when the walk reaches n or –n.

�  Report the average number of steps it took for the
walk to terminate.

�  Do this for various n and plot the results to get a
sense of how rapidly the walk terminates, as a
function of n.

The random module

�  Programs for games and simulation use
randomization extensively.

�  In games, you want to add an element of

randomness to the obstacles or adversaries.

�  In simulations (e.g., traffic simulation) you want to
introduce actors into your simulation according to
certain probability distribution.

Some functions in the random module

�  random.randint(a, b): return a random integer N
such that a <= N <= b.

�  random.random(): Return the next random floating
point number in the range [0.0, 1.0).

�  random.uniform(a, b): Return a random floating
point number N such that a <= N <= b for a <= b
and b <= N <= a for b < a.

Simple Example Problem

Problem: Write a program that takes as input a
positive integer n and simulates n rolls of two six-sided
dice. The program should report the number of times 7
appears as the sum of the outcomes of the two dice
rolls.

Solution

Programmer: Sriram Pemmaraju
Feb 8th, 2015

This program simulates the roll of two six-sided dice
as many times as specified by the input. Then the program
outputs the number of times 7 shows up as the sum of the two
dice rolls

import random
n = int(input("Enter the number of times you want the dice rolled: "))

counter = 0 # keeps track of the number of rolls
numSevens = 0 # keeps track of the number of sevens

while-loop that simulates the roll of two six-sided dice n times
while counter < n:
 # Roll two six-sided dice and compute the sum of the outcomes
 sumRolls = random.randint(1, 6) + random.randint(1, 6)

 # if sum is seven then update a counter called numSevens
 if sumRolls == 7:
 numSevens = numSevens + 1

 counter = counter + 1

print("The number of sevens is", numSevens)

Taking a single random step

import random

Version 0. This program starts off a person at 0 and moves
her one step to the left or right, at random.

location = 0
step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2
if step == 0:
 step = -1
location = location + step
print(location)

Simulating the random walk

import random

Programmer: Sriram Pemmaraju
Date: Feb 8, 2015

Version 1: moves the person at random, one step at a time, left or right,
until the person reaches a barrier n or -n. Outputs the number of steps
it took to reach the barrier

location = 0 # tracks the person's current location
n = 10 # value of the barrier
length = 0 # tracks the length of the random walk

This moves the person until she reaches the barrier at n or -n
while abs(location) < n:
 step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

 # Adjusts the random number to be either -1 or +1
 if step == 0:
 step = -1
 location = location + step # updates location
 length = length + 1

print(length)

What more is there to do?

There are two more things we need to do to solve our
problem:

1.  Find the average length of a walk, for a particular value

n of the barrier. We have to decide how many runs to
take the average over.

2.  Repeat this for various values of n and try to
understand the trend.

We need a loop around our current code to do (1) and

another loop around that code to do (2).

Defining a function

�  Things have become complicated enough that we
need to reorganize our code using functions.

�  The plan is to define a function called randomWalk
that takes n (the barrier distance) as an argument
and returns the length of a simulated random walk.

�  We can then just call this function from the main
part of the program.

The function randomWalk

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
 location = 0 # tracks the location of the person
 length = 0 # tracks the length of the random walk

 # Loop terminates when the location reaches n or -n
 while abs(location) != n:
 step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step
 length = length + 1

 return length

Notes about this function

�  The first line of the function:
 def randomWalk(n)

�  The body of the function is indented.
�  It is as though n is input to the function.
�  A function can have one or more arguments
�  The last line of the function is usually a return:

 return length

Python keyword
function name argument list

The rest of the program

 n = input("Enter a positive integer: ")
 print(randomWalk(n))

�  randomWalk(n) is a call to the function randomWalk

providing it the number n that the user as input as an
argument.

�  In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

�  This means that “control” is transferred to the function and
we start executing the function starting with its first line.

�  The value that the function returns essentially replaces the
function call.

Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated
sum = 0 # sum of the lengths of the walk; needed for average
while count < 100:
 sum = sum + randomWalk(n)
 count = count + 1

print sum/100

Function call. The function is
called 100 times.

import random

Programmer: Sriram Pemmaraju
Date: Feb 8, 2015

Version 2: moves the person at random, one step at a time, left or right,
until the person reaches a barrier n or -n. Outputs the number of steps
it took to reach the barrier

This function takes in the value of the barrier, simulates a random
walk that terminates on reaching the barrier, and returns the length
of the simulated random walk
def randomWalk(n):
 location = 0 # tracks the person's current location
 length = 0 # tracks the length of the random walk

 # This moves the person until she reaches the barrier at n or -n
 while abs(location) != n:
 step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

 # Adjusts the random number to be either -1 or +1
 if step == 0:
 step = -1
 location = location + step # updates location
 length = length + 1

 return length

This is the main part of the program (i.e., outside the function)
n = input("Enter the value of the barrier (a positive integer): ")

sum = 0 # track the total length of all simulated random walks
counter = 0
The simulation is repeated 100 times
while counter < 100:
 sum = sum + randomWalk(n)
 counter = counter + 1

print(sum/100)

Function definition

The organization of the program

Main program

First line of code that is executed is the
first line of the main program

Function call

Notes about programs that contain function
definitions

�  The first line of the main program is the first line of code that is
executed.

�  The function is only executed when it is called. In this code, the
function is called 100 times and is therefore executed 100 times.

�  In general a program will contain many function definitions followed by
a main program.

�  Functions may call each other.

�  Typically the function will return a value. The returned value replaces
the function call.

Making another function

This function repeats a random walk with barrier n as many times
as specified by the argument numRepititions and returns the length
of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):
 count = 0 # tracks the number of times the walk is repeated
 sum = 0 # sum of the lengths of the walk; needed for average

 # Repeats the random walk as many times as specified by numRepititions
 while count < numRepitions:
 sum = sum + randomWalk(n)
 count = count + 1

 return sum/numRepititions

The rest of the program

 n = input("Enter a positive integer: ")
 print(manyRandomWalks(n, 100))

�  The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

�  Names in the function call have nothing to do with names
in the function definition. We could have written
 m = input("Enter a positive integer: ")
 print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

m = 10 # tracks the value of the barrier
m travels through 10, 20, ..., 100 in this loop and we compute and print the
average walk length for each m
while m <= 100:
 print manyRandomWalks(m, 100)
 m = m + 10

Sample output

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86 376.4
827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk

