A Few versions of the Primality Testing Program

 $FEB 4^{TH}, 2015$

Primality Testing: Version o

```
n = int(input("Please type a positive integer, greater than 1: "))
factor = 2
isPrime = True
while factor < n:
  if (n % factor == 0):
     isPrime = False
  factor = factor + 1
if isPrime:
  print(n, " is a prime.")
else:
  print(n, " is a composite.")
```

Recall our "almost Python" code for listing primes

```
N = int(input())

n = 2
while n <= N:
    if n is a prime:
        print(n)
    n = n + 1</pre>
```

• We are now ready to replace "if n is a prime" with actual Python code.

Program for listing primes

```
N = int(input())
n = 2
while n \leftarrow N:
   factor = 2
   isPrime = True
   while factor < n:
     if (n % factor == 0):
        isPrime = False
     factor = factor + 1
   if isPrime:
      print(n)
   n = n + 1
```

This is the code for primality testing.

This is an example of code with *nested loops*, i.e., a while-loop inside a while-loop.

Nested loops example

Let is figure out what this program prints.

```
i = 1 Outer while-loop

while i < 10:

j = 2

while j < 10:

Inner while-loop

print(i, j)

j = j + i

Main idea: For every iteration of the outer loop, the inner loop goes through all its iterations.
```

Now back to primality testing: an easy improvement

- As soon as we discover that a "candidate factor" is actually a factor of *n*, we know that *n* is a composite.
- We can therefore exit the loop at this point and not consider any more "candidate factors."
- The break statement provides a convenient way to exit a while-loop even before the boolean expression in the while-statement is falsified.

Discussing the code: The break statement

• The break statement forces the program to exit out of the smallest enclosing while-loop (or for-loop).

• Example:

```
n = 10
while n < 20:
    if n % 7 == 0:
        break
    n =n + 1
print(n)
```

Primality Testing: Version 1

```
n = int(input("Please type a positive integer, greater than 1: "))
factor = 2
isPrime = True
while factor < n:
  if (n % factor == 0):
     isPrime = False
     break
  factor = factor + 1
if isPrime:
  print(n, " is a prime.")
else:
  print(n, " is a composite.")
```

Understanding the Improvement

- If the input is a composite, then the **break** statement provides some savings in running time because the program does not have to run through all candidate factors 1 through N-1.
 - Example: 987654321 is a composite and 987654321 = 3 x 329218107.
 So the break statement causes the loop to iterate twice.
 Without the break the loop would iterate about a billion times.
- For prime number inputs, there is no speed-up.

Another Improvement

- A number n does not have any factors larger than n/2, except itself. So we could stop generating candidate factors at n/2.
- But wait, we can do much better! We know $\sqrt{\mathbf{n}} \times \sqrt{\mathbf{n}} = \mathbf{n}$. Hence, if n has a factor larger than \sqrt{n} , then it has a factor smaller than \sqrt{n} also.
- This means that only factors 2, 3,..., floor(\sqrt{n}) need to be considered.

Example

- Say n = 123. Now $\sqrt{123}$ = 11.090536506409418.
- So if 123 has a factor greater than 11.09, then it has factor less than 11.09.
- This means in looking at "candidate" factors, we only need to look at numbers 2, 3, ..., 11.

Primality Testing: Version 2

```
import math
n = int(input("Please type a positive integer, greater than 1: "))
factor = 2
isPrime = True
factorUpperBound = math.sqrt(n)
while factor <= factorUpperBound:
  if (n % factor == 0):
     isPrime = False
     break
  factor = factor + 1
if isPrime:
  print(n, " is a prime.")
else:
  print(n, " is a composite.")
```

Modules in Python

- A *module* in Python is a file that defines a collection of related functions.
- All the functions in a module can be used after the module has been *imported*, using the *import* statement (usually at the beginning of the program).
- A function f in a module m is called as m.f(arguments).

For example, the **sqrt** function in the **math** module is called as **math**.**sqrt(n)**.

The math module

Contains many functions:

- Power and logarithmic functions
- Trignometric functions
- Hyperbolic functions
- Mathematical constants

• Examples:

- o math.log10(x): returns the logarithm to the base 10 of x.
- \circ math.pow(x, y): returns x raised to the power of y.

Example Problem

Write a program that reads a positive integer and outputs the number of digits in the integer.

Version with while-loops

```
n = int(input("Enter a positive integer: "))

counter = 0
while n > 0:
    counter = counter + 1
    n = n // 10

print(counter)
```

Version with math functions

import math

n = int(input("Enter a positive integer: "))
print(int(math.log10(n)+1))

Questions

- How do we know what modules Python supports?
- How do we know what functions Python's math modules supports?

Answers:

- For all matters related to Python visit
 http://docs.python.org/3/

 This is the authoratative source on Python. I visit this website
 - all the time when I program in Python.
- python.org contains a *Python tutorial* that is a great reference.
- Section 9.2 is on the math module and contains a list of math functions available in the module.
- There is a *module index* that lists all modules that Python 2.7.3 comes with.
- This is a good time for you to look over parts of the Python tutorial (e.g., 3.1.1 Numbers, 3.1.2 Strings, 3.2 First Steps Towards Programming, 4.1 If statements).

Back to primality testing

How much improvement do we get from considering "candidate factors" only up till square root of *n*?

- To answer these types of questions, a visit to "The Prime Pages" at http://primes.utm.edu/ is a good idea.
- Here you will see lots of lists of primes, including a list of the first 50 million primes.
- 982,451,653 is the 50 million-th prime; square root of this is roughly 31,344.
- So the difference is about 1 billion iterations versus about 31 thousand iterations!
- We will return to this issue of how much speed-up we get when we learn to *time* our programs in the next lecture.