Programming Problem 2:
Primality testing

O




List Primes

Given a positive integer N, generate all prime
numbers less than or equal to N.

Example:
Input: 100
Output:2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71 73
79 83 89 97y



More control flow statements: break

Using modules in Python

The math module and useful functions in it
Boolean operators: and, or, not

Timing Python programs: time module
Nested loops

A second look at variable and expressions
More on numeric data types in Python



Our digital life depends on the security of information that we send over
the internet.

Security of information is made possible by encryption methods.

One of the most well known encryption methods is the RSA algorithm (R =
Ron Rivest, S = Adi Shamir, and A = Leonard Adleman).

The first step of the RSA algorithm is to find two large primes p and q and
compute their product n = p*q.

“Large” here could mean 300 digits or so.

So primality testing (i.e., checking whether a given gositive integer is a
prime) is a computational problem that has attracted a lot of attention.



Consider each integern = 2, 3, 4, ..., N.

Check if n is a prime and if so print it.



N = int(input())

n=2
while n <= N:
if i is a prime number:
print(n)
n=n+1

This is a standard way of using a while-loop to walk through a sequence of integers.

If we knew how to check if n is a prime, we would be done. So we should now solve
the primality testing problem.

Thus we have reduced our original problem into a “smaller” problem. This is a
standard algorithmic technique in computer science.



Generate all “candidate” factors of n, namely
2,3, ...,N-1
For each generated “candidate” factor, check if n is

evenly divisible by the “candidate” factor (i.e., the
remainder is 0).

If a “candidate” factor is found to be a real factor,
then n is composite.

If no “candidate” factor is found to be a real factor,
then n is a prime.



Input n
For each candidateFactor = 2, 3, ..., n-1:
if n is evenly divisible by candidateFactor then
remember that n is a composite

If we have detected that n is a composite
output that n is a composite
Otherwise output that n is a prime



number = int(input("Enter a positive integer: "))

factor = 2
iISPrime = True
while(factor <= number - 1):
if(humber % factor == 0):
iIsPrime = False
factor = factor + 1

if(isPrime):

print(number, "is prime")
else:

print(number, "is composite")



» This program uses the boolean variable isPrime to
remember if the input is a prime.

* Notice that you don’t have to say: isPrime == True

» In general, boolean variables are quite useful for
remembering situations that occurred in the
program, for later reference.

* Questions:

What if we had not initialized isPrime to True?

Could we have used a boolean variable called isComposite to
remember that the input is a composite, rather than a prime?



