More about functions:
Keyword arguments and parameters

O




Parameters are variables used in a function header.
Parameters get assigned values when a function is called.

def foo(x,y, 2):
X=y+2z
return X +y + z

Here X, y, and z are parameters of the function foo.

Inside the function foo, they can be treated as variables that
acquire values provided by a function call (e.g., foo(2, 7, 3)).



Arguments in a function call could be complicated
expressions that will be evaluated to a value first
before being sent in to the function.

Example: manyRandomWalks(80/x, y + 1)

In fact, arguments could be expressions involving
calls to other functions.

Example: manyRandomWalks(int(math.sqrt(x)),y + 1)



One way in which Python matches arguments to parameters is by reading them
left to right and matching 15t argument to 1t parameter, 2" argument to 274

parameter, etc.
This is called the positional style of parameter passing.

So
manyRandomWalks(10, 100)

and
manyRandomWalks(100, 10)

will return very different values.

In this way of parameter passing the number of arguments and the number of
parameters also have to exactly match.



You can avoid matching by position by using
keyword arguments in the function call.

Example: manyRandomWalks(numRepititions = 200, n = 20)
Here numRepititions and n are function
parameters.

Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)



» There is a way to define default values of parameters.
» Example: def manyRandomWalks(n, numRepititions = 100)

» This function can now be called with one or two
arguments and in different styles.

» Examples: Try these out

manyRandomWalks(10)
(The default value of 100 us used for numRepititions; 10 is used for n)

manyRandomWalks(40, 150)
(40 is used for n, 150 for numRepititions)



def test(x = 3,y = 100, z = 200):
return X -y + z

Examples of function calls:
test(10) (10 is used for x; default values 100 for y and 200 for

z)

test(10, 20) (10 is used for x, 20 for y; default value 200 for z)
test(z = 35) (default values 3 for x, 100 for y; 35 for z)
test(10, z = 35) (10 for x, default value 100 fory, 35 for z)

test(z = 50, 10, 12) (Error: positional arguments come first,
then keyword arguments)



Functions don’t have to explicitly return values. For
example:

def printGreeting(name):
print("Hello", name, "how are you?")
How would you call such a function?
Example:
printGreeting("Michelle")
What would happen if you executed?
x = printGreeting(“"Michelle")



None is a built-in constant in Python that is used to indicate
the absence of a value.

In the example,
x = printGreeting("Michelle")
x is assigned the value None. You can see this by trying

print(x)
To understand None better try:
type(x)
bool(x)

Unlike True and False which can be assigned to even though they are
listed as built-in Python constants, None cannot be assigned to.



