
F E B 1 6 - 1 8 , 2 0 1 5

(1) Ordering of Functions
(2) Scope of Variables in Programs with

Functions

Ordering functions in your code

�  Will the following code work? Here the function is
defined after the main program that is calling it.
 print foo()
 def foo():
 return “hello”

�  Will this work? Here functions are defined before the
main program. But, foo2() is called before it is defined
by foo1.
 def foo1():
 return foo2()
 def foo2():
 return “hello”
 print(foo1())

How does Python process code with functions?

 def foo1():
 return foo2()
 def foo2():
 return “hello”
 print(foo1())

1.  Python starts scanning the code from the beginning of the

file.
2.  It notes down names of functions as it encounters their

definitions. Note that the functions are not executed at this
time.

3.  It reaches the first executable statement (print foo1()) and
since foo1 is known to Python, control is transferred to foo1.

4.  In foo1, Python encounters a call to foo2. Function foo2 is
also known to Python and so control is transferred to foo2.

Lesson of this example?

�  Define all functions before the main program.

�  And then don’t worry about the order in which the
functions themselves are defined.

Variables revisited

�  To better understand how information gets passed
between a function call and a function, let us develop
a “mental model” of how variables in Python work.

�  We will use a “sticky note” model for Python
variables.

�  What happens when the following code is executed?

x = 10
y = x
x = x + 1

Note y continues to have value 10.

“Sticky note” model

•  A memory cell with value 10 is created and a “sticky
note” with x on it is attached to this memory cell.

•  A new “sticky note” with y on it is also attached to the
same memory cell.

•  A new memory cell with 11 is created and the “sticky
note” x is moved from the old cell (with 10) to the new
cell (with 11).

def foo1(n):
 return n * foo2(n*n)

def foo2(m):
 return m * "hello”

print(foo1(2))

�  When foo1 is called from the main program, 2 is sent in as an
argument. The parameter n acquires the value 2.

�  When foo2 is called from foo1, the value of n*n is sent in as
argument. The parameter m acquires the value of n*n.

Terminology: Arguments vs Parameters

def foo(x):
 x = x + 1
 return 5

y = 10
print(foo(y))
print(y)

�  y is a “sticky note” attached to 10

�  When foo is called from the main program, x is a “sticky note” attached

to the same memory cell as y.

�  The “sticky note” x is moved to a memory cell containing 11 when the
line x = x + 1 is executed. Note that this does not change the value of y.

“Sticky note” model for parameter passing

Scope of a variable

�  The scope of a variable refers to the “where” and
“when” a variable is available for use.

�  Things were simple when we did not have functions.

�  If we only had a main program: the scope of a

variable extends from the point where the variable is
first defined till the end of the program.

Scope of variables inside functions

�  Parameters and variables defined inside a function
are “local” to that function.
 def foo():
 var1 = “hello”

 return var1 + var1

 # main program
 print(foo())

 if var1 == “hellohello”:
 print(foo())

var1 is a variable that is local to
foo(). It comes into existence
when the first line of foo() is

executed and it “dies” when we
exit the function.

var1 is not defined and this
usage will cause an error.

Function parameters are also local

 def foo(x):
 var1 = “hello”

 return var1 + x

 # main program
 print(foo(“bye”))

 if x == “hellohello”:
 print(foo())

The variable x is undefined
here because the parameter x
lives only for the duration of

the function

How does all this work?
Mental model: version 1.0

1.  Python creates a dictionary of variable names when it
starts evaluating the main program. It uses this
dictionary to insert, look up, and update variable
names.

2.  When the function foo is executed, a new dictionary of
variable names, specific to foo is created.

3.  First the parameter x is inserted into this dictionary.
Then variable var1 is inserted.

4.  Whenever we access a variable inside foo, foo’s
dictionary is looked up.

5.  When the execution of foo is over, foo’s dictionary is
destroyed.

Global variables

�  Mental model 1.0 explains why variables defined
inside a function cannot be used in the main
program.

�  What about variables defined in the main program?
Can they be used inside a function?

def foo(x):
 var1 = "hello"
 return var1 + x + y

y = "good”
print(foo("bye"))

y is a global variable (i.e., it is
defined in the main program), but
can be used in the function that is

called after it is defined.

Mental model: version 1.1

�  Here is a “more correct” version of item (4)

 Whenever we access a variable inside foo, foo’s
dictionary is looked up. If a variable is not found in
foo’s dictionary, then Python looks up the dictionary
of the main (calling) program.

�  This allows a function access to “global” variables.

Local variables override global variables

def foo(x):
 y = "hello"
 return x + y

y = "good”
print(foo("bye"))
print(y)

�  This mechanism also gives local variables precedence.
�  In the above example, the variable y is found in foo’s

dictionary and that is the variable that is accessed in foo.

y is a global variable

This is a different, local y.
During the function, all

mention of y refers to this
local y.

Explicit global variables

def foo(x):
 global y
 y = "hello"
 return x + y

y = "good”
print(foo("bye"))
print(y)

�  global is a Python keyword.
�  If it were not for the global y statement, the variable y being

mentioned inside foo would have been defined in foo’s
dictionary and would be local to foo.

We are now explicitly declaring that the
y we want to access inside foo() is the

global variable y

Explicit global variables avoid confusion like this

def foo():
 if y == "hello":
 print "Hello to you as well!"

 y = "hi"
 print y

y = "hello"
foo()

�  This is an error in Python because Python sees the
assignment y = “hi” inside foo() and assumes that all
appearances of y inside foo() refer to this local variable.

�  Therefore, in the first line of foo() we are accessing a
variable not defined yet.

Here y is a global
variable

And here y is a local
variable

WARNING!!

�  I would discourage the use of global variables, both
implicit and explicit.

� Communication between functions or between the
main program and a function should be explicit –
via parameters/arguments and returned values.

