CS:1210 Exam 1
Feb 20th, 6:30 pm to 8:30 pm

Instructions:

e This is an open notes exam and you have 2 hours to complete it. There are 4 problems in
the exam and these appear on 7 pages. The exam is worth 100 points (10% of your grade);
the first two problems are worth 20 points each and the last two are worth 30 points each.

e Make sure that you do not have any electronic devices (laptops, phones, calculators, dic-
tionaries, etc.) on your desk; you are not allowed to access these during your exam.

e Write as neatly as you can.

e Show all your work, especially if you want to receive partial credit.

Name:

Circle your discussion section:
A01 (8:30-9:20, 221 MLH) A02 (9:30-10:20 213 MLH) A03 (11-11:50, 116 MH)

A04 (12:30-1:20, 66 SH) A05 (3:30-4:20, 248 JH) A06 (5-5:50, 346 JH)

1. [20 points] Write down the value and type of each of these expressions. Assume that
the modules math and random have already been imported prior to the evaluation of these
expressions.

(a) float(str(54/10) + "03")

(b) (random.randint(0, 10)*10 <= 100) or (random.randint(0, 10) < 5)

(c) int(str(543 % 10) + str(543 // 10))

(d) math.sqrt(16) + 3

(e) (not not not True) and True

(f) 76 // 10 + 76 / 10

(g) int(5 + random.random())//2

(h) (153 < 153) or (mot (175 != 198))

(i) "The answer is"+ " " + str(0.5)

(j) str(15.0//3 + 3//2)

2. [20 points] You are given some code and asked to answer questions about this code.

(a) What output does this program produce?

n=>5
while n < 10:
m=n-1
while m < 2%n:
print(n, m)
ifm % 3 == 0:
break
m=m+ 2

print("***")
n=mn+1

(b) What output does this program produce? The function fool uses certain variables; for
each variable used in fool, write down whether that variable is a (i) parameter, (ii) local
variable, or (iii) global variable. Answer the same question for foo02.

def fool(m):
n=3
returnm +n -y

def foo2(p):
global y
y=y -2
return p*p + y

main program

y = 13
while True:
if y % 5 != 0:
print (foo2(fool(y)))
print (fool(fo02(4)))
else:
break

3. [30 points] In this problem, you are given two partially completed programs. Your task
is to complete each program.

(a) Here is a primitive, partially completed, program that is meant to test the typing skills
of a user. The user is required to repeatedly type one of the following three words
correctly: “mongoose” or “squirrel” or “possum”. Each word needs to be typed in
a new line and it does not matter which of these three words the user types. Your
program should let the user keep typing until the user makes 3 mistakes. As soon
as the user makes the third mistake your program should terminate with a message
giving the percentage of words correctly typed by the user. (Note that this is 100
times the number of correctly typed words divided by the number of typed words.)

The program contains two “blanks” where code is missing. Your task is to write this
code.

error = 0 # tracks the number of errors
count = 0 # tracks the total number of words typed by user
while True:

word = input()

count = count + 1

Increment variable error if the user has made an error
Blank 1
if

error = error + 1

if error ==
break

Output percentage of correct words
Blank 2
print ("Percentage of correct words:",

(b) For Homework 1, you implemented an algorithm to compute the square root of a
given positive real number. A similar method could be used to compute the cube
root of a positive real number. Given positive floating point numbers s and ¢, the
following algorithm (described in pseudocode) will output a real number s’ such that
|s" — &/s| < e. In other words, the algorithm will output s’ that is quite close (i.e.,
within distance €) to the actual cube root of s.

Pseudocode:
(a) start with the initial guess zg = s/3 and let i = 1.
(b) compute z; using the formula

SRy (A
Tr; = 3 x’?_l Ti—1] -

(c) if the difference between z; and z;_; is less than or equal to €, output z; and
halt.

(d) else increment i and return to step (2).

For example, suppose that we want to compute the cube root of s = 60. Then, xy = 20
and x1 = 1/3-(60/400 + 2 - 20) = 1/3 - (40.15) = 13.38333. Values of xo,x3,... can
be computed in a similar manner from previous values in the sequence.

Given below is a partially completed function called cubeRoot that implements the
above algorithm. Your task is to fill in the three blanks in the code.

def cubeRoot(s, e):
0ldX = s/3 # initial guess
The next value of x
Blank 1

while True:
If the new x and the oldx are close
enough, then return an answer
Blank 2

return newX

Update newX and oldX

Blank 3
0ldX = newX
newX =

4. [30 points] For each part of this problem, you are required to write a function.

(a) Write a function called encode that takes as parameters a positive integer n and a

nonnegative integer k and uses k to encode n. The encoding process works as follows:
to each digit of n, the value k is added to produce a new digit, and this new digit
replaces the old digit. So for example if n = 243 and k = 2 then the encoding process
would yield 465. If the result of adding k to a digit of n yields a result with more
that one digit, we simply keep digit in the one’s place and throw away the remaining
digits. For example, if n = 287 and k£ = 5 then the encoding process would yield 732.
(This is because 7 + 5 = 12 and we only keep the 2; 8 + 5 = 13 and we only keep
the 3; and 2 + 5 =7.)
Use the following function header:

def encode(n, k):
The function should return the encoded number as a string. For example, the function
call encode (596, 5) should return the string “041”.
Note: My code for this function is 7 lines long; your code should not be too much
longer.

(b) Write a boolean function isPerfectCube that takes a positive integer n as a parameter
and returns True if n is a perfect cube. Otherwise, the function returns False. Note
that a positive integer n is a perfect cube if there is some integer m such that m? = n.
The first five perfect squares are 1, 8, 27, 64, and 125. Thus, if n = 64, the function
should return True, but if n = 35, the function should return False.

To do its work, the function isPerfectCube should call the function cubeRoot that
was discussed in Problem 3(b). Now note that cubeRoot will only return an approz-
imate cube root. So for example, cubeRoot (64, 0.001) will return a floating point
number that could be anywhere between 7.999 and 8.001.

Notes: (i) The correctness of your answer for this problem is completely independent
of the correctness of your answer for Problem 3(b). (ii) My code for this function is
3 lines long; your code should not be too much longer.

