
22C:16 Project 1
Spring 2012

Due dates: Phase 1: Friday 3/23 at 4:59 pm. Phase 2: Wednesday 3/28 at 4:59 pm. Phase
3: Wednesday 4/4 at 4:59 pm.

Introduction

Locating “facilities” in a geographic area so as to minimize cost and maximize coverage is a
problem that lot of companies and organizations solve all the time. For example, Walmart has
one of the largest private distribution networks in the world. Their webpages tell us that they
have 40 regional distribution centers with each distribution center supporting “between 75 and
100 stores within a 250-mile radius.” Because the distribution centers are so huge (over 1 million
square feet in size) and cost so much to build and maintain, Walmart has to think very carefully
about where to locate each distribution center. Similarly, a company such as Google has a bunch
of “data centers” across the world, where its servers are located. Google also has to think very
carefully about where to locate its data centers so that it can continue to provide high speed
access to its search engine and other services. Even local governments have to solve the facility
location problem when determining where to build the next public school or where to build a
public park.

In this project you will be provided some basic geographic data on 128 cities in the U.S.
and asked to solve a version of the facility location problem. Roughly speaking, your program
will do three things: (i) read the provided geographic data from a file and store the data in an
appropriate data structure, (ii) solve the facility location problem on this geographic data set,
and (iii) output the solution to the facility location problem in a format that can be visualized
in a mapping software such as Google maps.

Data

We have posted a file called miles.dat that contains geographic data on 128 cities in the U.S.
and Canada. The data is very old — from a 1949 Rand McNally mileage guide, so the population
numbers are definitely out of date. The highway mileage may also be out of date, but the data
serves our purposes quite nicely. For each of the 128 cities, the data file contains (i) the name
and state of the city, (ii) the latitude and longitude of the city, (iii) the population of the city,
and (iv) the distance from that city to each of the cities listed before it in the data files. For
example, Wilmington, Delaware is the tenth city in the data file and here is how information
about Wilmington, DE appears in the data file.

Wilmington, DE[3975,7555]70195
466 168 1618 430 934 299 2749 1305 345

The two numbers in square brackets after “DE” are the latitude and longitude of the city.
Following this, we see the population of the city, which was 70,195 in 1949. In the next line are
the distances between Wilmington, DE and the 9 cities that appear before it in the file. For
example, 466 is the number of miles between Wilmington, DE and the city Wilmington, NC
that appears just before Wilmington, DE in the data file. Similarly, 168 is the distance between
Wilmington, DE and Winchester, VA which appears just before Wilmington, NC in the data
file.

1



The facility location problem

There are many versions of the facility location problem. Here is the version you are required to
solve. You are given a radius of coverage r (in miles) and asked to locate the fewest number of
facilities (each facility being located at one of the 128 cities in the data set) so that every one
of the 128 cities in the data set is within r miles from some facility. For example, imagine that
you are the logistics manager for a new retail chain and you want to locate distribution centers
in the U.S. Based on your research you know that you should ensure that every population
center is within 400 miles of at least one of your new distribution centers. In other words, each
distribution center has a radius of coverage of 400 miles. Now given this constraint, you want to
keep your costs low by building the fewest distribution centers.

No one knows how to solve the facility location problem efficiently. It is one of these notorious
NP-complete problems that have eluded efficient solution for many decades now. In fact, there is
consensus among computer scientists that problems like facility location will not have an efficient
solution. However, companies still need solve the facility location problem all the time and so
we will resort to using a “heuristic” that is not guaranteed to produce a solution with fewest
facilities, but will hopefully find a solution that is pretty good.

The algorithm we want you to implement is described in the following pseudocode. The
algorithm picks locations of facilities “greedily” by repeatedly finding a city that can “serve” the
most number of cities that have not yet been “served.” Since r is the given radius of coverage,
a facility at a city c can “serve” any other city that is within r miles of c.

Greedy Algorithm for facility location
1. Initially all cities are unserved.
2. while there are cities that are unserved:
3. Pick a city c that “serves” the most unserved cities.
4. Mark the city c and all cities within r miles of c as served

Organizing your work

We require that you organize your work into three phases. Phase 1 is due on Friday, March 23rd,
Phase 2 is due on Wednesday, March 28th, and the complete project is due on Wednesday, April
4th.

Phase 1

For Phase 1 you should write a program that reads the data in the given file miles.dat and stores
this data in an appropriate data structure. Now that you have some experience in programming
with lists in Python, there are many different possible data structures you could use. Here is our
suggestion on how you should store the data. Define a list of strings called cities for storing the
names of the cities. Since the names of cities are not all distinct (e.g., there are two Wilmington’s)
you should store the name of the city along with the name of the state that the city belongs
to. One way to do this would be to represent each city by a string “cityName stateName”.
For example, the first city in the data set is Youngstown, which is a city in Ohio. You would
represent this city by the string “Youngstown OH” with the city name and the two-letter state
code being separated by a singe blank. The cities should by stored in the list cities in the
order in which they appear in the data file. For example, cities[0] should be “Youngstown
OH”, cities[1] should be “Yankton SD” etc. Besides the list cities, you should maintain
three other lists: coordinates, population, and distances for the rest of the information. All
of these lists, including cities, should have length 128. We will now describe each of these lists.

2



• The element in position i in the list coordinates should be a list of length 2 specify-
ing the latitude and longitude of the city in position i in the list cities. For example,
coordinates[0] should be [4110, 8065], the latitude and longitude of Youngstown, OH.

• The element in position i in the list population should be an integer specifying the popu-
lation of the city in position i in the list cities. For example, population[0] should be
115436, the population of Youngstown, OH.

• The element in position i in the list distances should be a list of length 128 specifying
the distances between the city in position i in the list cities and the rest of the cities. For
example, distances[0] should contain the distances between Youngstown, OH and the
rest of the cities in the data set. In particular, distances[0][0] should be the distance
between Youngstown, OH and itself, which is 0; distances[0][1] should be the distance
between Youngstown, OH and Yankton, SD, which is 966; distances[0][2] should be
the distance between Youngstown, OH and Yakima, WA, which is 2410, etc.

Together, the four lists cities, coordinates, population, and distances contain all of the
data that is in miles.dat.

To complete Phase 1, you are required to implement the following functions:

• A function called getCoordinates that takes a city name and returns the list containing
the latitude and longitude of the given city. You can assume that the city name is a string
of the form “cityName stateName”.

• A function called getPopulation that takes a city name and returns the population of
the given city. You can assume that the city name is a string of the form “cityName
stateName”.

• A function called getDistance that takes two city names and returns the distance between
the two cities, You can assume that the city names are strings of the form “cityName
stateName”.

• A function called nearbyCities that takes a city name c and a positive real number r and
returns the list of all cities with r miles of the city c. You can assume that the city name c
is a string of the form “cityname statename”. The list of cities returned by your function
should be in alphabetical order.

You should feel free to implement as many other functions as you think would be helpful to you,
but you are required to implement the functions mentioned above and these are the functions
we will create test files for.

You should submit a file called project1Phase1.py consisting of your solution to Phase 1 of
Project 1.

Phase 2

In this phase you will write a function called locateFacilities that takes as parameters the
data structure you built in Phase 1 and a positive real number r (representing the radius of
coverage) and returns a list consisting of cities at which facilities were located. More specifically,
you should use the following function header:

def locateFacilities(cities, distances, r)
The list of cities returned by this function should be in alphabetical order.
This function should implement the greedy algorithm described in the section titled “The facility
location problem.” One data structure that would be helpful in implementing this greedy algo-
rithm is a boolean list called served. This is a list of length 128 that is initialized to all False

3



values. The element in position i in this list indicates whether city i (i.e., the city in position i
in the list cities) has been served or not. Once such a data structure has been defined, you can
then find out for any given city c the number of cities, not yet served, that are within radius r of
c (you should write a function for this!). If you implement this, the greedy algorithm is easy to
complete because it repeatedly locates a facility at a city c for which the number of “unserved”
cites within radius r of c is maximum.

You should submit a file called project1Phase2.py consisting of your solution to Phase 2 of
Project 1.

Phase 3

In this phase you will write a function called display that takes a list of cities and the data
structure you built in Phase 1 and produces a file that can then be visualized using a mapping
software such as Google Earth or Google maps. Suppose that L is a list of cities representing
some subset of the 128 that are in the data set. At the minimum your visualization should
consist of (i) a map of the U.S., with the cities in L identified by “balloons” or “push pins,”
(ii) every city in the data set that is not in L should be “connected” by a line segment to the
nearest city in L. If L is the set of cities computed by your facility location program, then this
visualization is a simple way of showing L and how the rest of the cities (i.e., those not in L) are
served by the facilities in L. You can be as creative with this as you want and go well beyond
these requirements. You may receive a maximum of 10 points of extra credit for the creativity,
elegance, etc. of your visualization.

My suggestion for the function header for the function display is:
def display(facilities, cities, distances, coordinates)

This function takes the cities in the list facilities and places push pins at these cities. For the
remaining cities, line segments are drawn from each of these to the nearest city in facilities.
The data structures distances and coordinates created in Phase 1 will be helpful in figuring
out (i) which facility is nearest and (ii) the latitude and longitude of each city for the KML file.

The visualization can be created by having your python program output what is called a
KML file. “KML” stands for “keyhole markup language,” which is a file format similar to html,
except that it is used to display geographic data in an Earth browser such as Google Earth,
Google Maps, or Bing maps. You can learn the basic rules of KML by reading KML Tutorials
available on the web — a link to one of these is posted on the course page. Also, you can
experiment with the sample KML files posted on the course page and those available at the
KML tutorial page. There are two ways of viewing KML files:

• You can download Google Earth on to your home computer and open a KML file using
Google Earth.

• You can place the KML file in a special directory on your Computer Science account.
Anything placed in this special directory is “served” by the Computer Science web server
and can be viewed by anyone using Google maps or Bing maps view their browser.

More specific instructions on viewing KML files are posted on the course page. KML files can
be created “by hand” by editing a text file. In this instance, it is your program that needs to
create a KML file.

Submit a python file called project1Phase3.py along with two KML files: visualization300.kml
and visualization800.kml. The facilities shown in visualization300.kml are facilities re-
turned by the locateFacilities function with r = 300. The facilities shown in visualization800.kml
are facilities returned by the locateFacilities function with r = 800.

4


