
M A R C H 5 T H , 2 0 1 2

Functional Programming in
Python

Problem

Write a program that counts the number of numbers
in the range 0 through 1000 that contain the digit 7.

 The program in its entirety:

def containsSeven(s):

 return "7" in s

print len(filter(containsSeven, map(str, range(0, 1001))))

Functional Programming

 Functional programming is a programming paradigm that
treats computation as the evaluation of mathematical
functions.

 Programming languages that do not use this style are called
imperative programming languages (C, C++, Java, etc).

 For our purposes in this course, functional programming
amounts to passing functions as arguments to other
functions.

 We will learn about built-in Python functions map, filter,
and reduce that are extremely powerful because they take
other functions as arguments.

Functional Programming

 In general, it is easier to reason formally about
programs written in functional programming style.

 General purpose functional programming
languages: Lisp, Scheme, Haskell, OCaml, etc.

 Specialized functional programming
languages: Mathematica (mathematical computation),
R (statistical computation), etc.

 Python has elements of both imperative style and
functional style.

The map function

 map(f, [a, b, c, d, e]) returns the list [f(a), f(b),
f(c), f(d), f(e)]

 The first argument of map is a function f and the
second argument is a list L; it returns a new list
obtained by applying f onto every element of L.

Examples:
 map(round, [4.57, -9.876, math.pi]) returns [5.0, -10.0, 3.0]
 map(str, range(0, 6)) returns [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’]

 The map function allows us to construct new lists from old
ones.

The map function

 Note that one can equivalently use the for-loop or
the while-loop. Using the map function is faster.

 The map function can also take functions with more
than one argument.

Example:

 def pow(x, y):

 return x + y

>>> map(pow, [3, 4, 5], [5, 6, 7])

[8, 10, 12]

The filter function

 filter(f, L) returns a sublist of L consisting of those
elements in L (in the same order as they appear in L)
for which the boolean function f evaluates to True.

 Examples:
 filter(bool, [0, -10, 0.0, None, “hello”]) returns [-10, 'hello']

 filter(containsSeven, map(str, range(1001))) returns a list

containing all of the numbers in the range 0 through 1000 that
contain 7.

The reduce function

 This function is used as:

reduce(f, L)

 Here f is a two-argument function and L is a list.

 At each step, reduce passes the current answer along

with the next item from the list, to f. By default, the
first item in the sequence initialized the starting
value.

Example: reduce(multiply, range(1, n+1)) is a
compact and efficient way of computing n!.

