String Operations

O




You can find a bunch of these in Section 5.6.1.
“String Methods” of the Python documentation

(v.2.7.2).

These are in addition to the operations we studied
that are common to lists and strings.
indexing, slicing
membership testing (in and not in) and concatenation (+).
index, count



String operations

O

» Here is a categorization (of some of these methods)
that might help you navigate the long list of available
string operations:

Boolean methods: isalpha, isalnum, isdigit, islower,
isupper, isspace , startswith.

Reformatting methods: lower, upper, swapcase, capitalize,
center, strip, Istrip, rstrip, ljust, rjust.

Split methods: split, Isplit, rsplit, splitlines.
Join methods: join.
Replace methods: replace




>>> "hello".isalpha()

True

>>> "hello".isalnum()

True

>>> "1234" isdigit()

True

>>> "39.78".isalnum()

False

>>> "hello?".islower()

True

>»> "Hello??".islower()

False

>>> "hello?".startswith("he")
True

>>> "hello?".startswith("He")
False



>>> "Hello, how are you?".lower()

"hello, how are you?’

>>> "Hello, how are you?".swapcase()

'hELLO, HOW ARE YOU?'
>>> "jack".capitalize()
‘Jack'

>>>" this string has spaces..

"this string has spaces..’

>>> " this string has spaces..

‘this string has spaces..
>>> "
" this string has spaces..’
>>> "test".center(20)

' test ‘

>>> "hello??".rjust(20)

' hello??’

this string has spaces..

".strip()
" Istrip()

".rstrip()



>>> "hello, how are you?" split()
[‘hello,’, "how', ‘are’, 'you?']
>>> "O’rher charac’rers can, be used,,‘ro split?".split(",")

[O’rher' ' characters', ' can', ' be', 'used’, '’ 'to’
sp||T'>]

>>> """ This string

... spans a

.. few lines" " .splitlines()

[' This string’, 'spans a *, 'few lines']
355 " JOln([llhe”OIl llar‘ell llyoull llokgll])
"hello are you ok?"

355 "??",JOI.H(["he”OH llarell Ilyoull |'Ok7"])
"hello??are??you??ok?"

i



>>> "hello how are you?".replace(" ", "!")
'hello!'how!are!you?*

>>> "hello, how are you?".replace("h","")
'ello, ow are you?'



Read a text file (e.g., a large novel such as “War and Peace”) that
is guaranteed to consist of words that are correctly spelled.
Extract “words” from this file and write these out in alphabetical
order in a file called “dictionary.txt”.

A word is a contiguous sequence of letters, preceeded by a non-
letter and followed by a non-letter.

Words in “dictionary.txt” should be unique and should be in
lower case.

Extra credit: An attempt should be made to avoid proper
nouns.



Version 1

O




I tried to run this on the full text of “War and Peace”
but it was taking too long to complete. So I decided
to run it on a smaller version of file consisting of just
the first 1000 lines of the original.

We will revisit the reason for this inefficiency later.
The output file contains one word per line.

But, the words contain non-letters and upper case
letters.

They are not in sorted order and surely contain
duplicates.



I made three changes to Version 1 in order to deal
with the issue of non-letters.

First I created a list of all non-letter characters that
might be in the text file.

Notice the use of ord, chr, and map in this code.

# List of all non-letter characters
punctuationMarks = map(chr, range(0, ord("A")) + range(ord("Z")+1, ord("a")) +
range(ord("z")+1, 127))



I defined a function that takes a line (i.e., a string)
and replaces every non-letter in this string by a

blank.
Notice the use of the replace method in this code.

# Replaces each non-letter character by a blank
def filterOutPunctuation(punctuationMarks, s):
for mark in punctuationMarks:
s = s.replace(mark, " ")
return s



Finally, I process each line by first replacing non-
letters by blanks and then splitting at blanks.

# Loop that processes each line of the file

for line in fin:
newLine = filterOutPunctuation(punctuationMarks, line)
wordList = wordList + newLine.split()



The list of words produced as output no longer
contains non-letters.

However, it does contain upper case letters, is not
sorted, and contains duplicates!



I made three changes to Version 2 in order to deal
with the upper case letter issue.

First I defined a function that takes a list of words
and turns this list into words in lower case.

def toLower(s):
return s.lower()

def makeListLower(wordList):
return map(toLower, wordList)



When each line is processed , the words are turned
into lower case words.

# Loop that processes each line of the file

for line in fin:
newLine = filterOutPunctuation(punctuationMarks, line)
wordList = wordList + makelistLower(newLine.split())



The word list is sorted before being printed.

#Block of code that produces output

fout = open("dictionary3.txt", "w")

wordList.sort()

for word in wordList:
fout.write(word+"\n")

fout.close()



Now I created a new version that dealt with the issue of
duplicates.

The only change I made is to the code that produces output.

fout = open("dictionary4.txt", "w")
wordList.sort()
previousWord = "" # keeps track of the word most recently output
for word in wordList:
# only print out new words
if word = previousWord:
fout.write(word+"\n")
previousWord = word
fout.close()



More often than not programs read from files, rather
than from input typed at the keyboard.

Often one program reads what another program outputs.

More and more, programs are reading data produced by
other hardware, e.g., sensors, telescopes, microarrays,
etc.

I these instances very little, if any, input is provided at
the keyboard.



Simplest Python statement for opening a file:
f = open("war.txt")

Assuming that there is a file called “war.txt” in the same

directory as your Python program, this statement opens
the file for reading.

Subsequently, the file can be accessed via the variable f.

Since f is a variable, it has a type. Try type(f).



File objects

O

» The variable f is often called a file object.

» If the file is missing from the directory, an error
message is issued.

* One a file object is successtully connected to a file
residing on your machine, we can use the file
object to read from the file in a variety of ways.




s = f.read()
Reads everything from the file into the string s

s = f.readline()
Reads the next line from the files into s

for line in f:
print line.split()
Allows us to read and process the file line by line



Build a dictionary of words extracted from the text
that we might be able to use later, maybe in a
spellchecker.

Compute the number of sentences in the text.
Compute the frequencies of letters in the text.

Two useful built-in Python functions that can help in
solving Problem 3 are ord and chr.



ord(ch)

if ch is a single character string, this function returns the
ASCII code for ch

chr(i)
returns a string of one character whose ASCII code is the
Integer 1

What is ASCII?

It stands for the American Standard Code for Information
Interchange. It assigns a number in the range 0..255 to
every character that can be entered at the keyboard.



The numbers 0..31 are reserved for unprintable
characters, e.g., the tab character (*\t"), the end of
line character (*\n"), etc.

32 is the ASCII value of the space character (" ")
33..47 1s used for some punctuation characters
48..57 is used for digits “0” through “9”
65..90 is used for upper case letters

97..122 1s used for lower case letters



Dec_Hx Oct Char Dec Hx Oct Html Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0 000 NUL {null) 32 20 040 &#32; Space| 64 40 100 &«#64d; [ 96 60 140 &#96;
1l 1 001 50H (start of heading) 33 21 041 &#33; ! 65 41 101 «#65; A [ 97 61 141 &#97; a
2 2 002 STX (start of text) 34 22 04z &«#34:; " 66 42 102 &«#66; B 98 62 142 &#98; b
3 3 003 ETX (end of text) 35 23 043 &#35; # 67 43 103 «#67; C 99 63 143 &#99; ¢
4 4 004 EOT (end of transmission) 36 24 044 &#36; § 65 44 104 &«#68; D (100 64 144 &#100; d
5 5 005 ENOQ (encquiry) 37 25 045 &«#37: % 69 45 105 «#69; E (101 65 145 &#l01; e
6 6 006 ACK [(acknowledge) 38 26 D46 &#38; & 70 46 106 &#70; F |102 66 146 &#l02; £
7 7 007 BEL (bell) 39 27 047 &#39; ! 71 47 107 «#71; G (103 67 147 &«#103; ¢
& & 010 BS (backspace) 40 28 050 &#40; | 72 48 110 &«#72; H |104 68 150 &#104; h
9 9 011 TAB (horizontal tab) 41 29 051 &#41: ) 73 49 111 &«#73; I |105 69 151 &#105; i

10 A 01z LF (NL line feed, new line)| 42 24 052 &«#d42; * 74 44 112 &«#74; J |106 64 152 &#l06; ]

11 B 013 VT (vertical tab) 43 2B 053 &#43; + 75 4B 113 &«#75; K |107 6B 153 &#107: Kk

12 C 0l4 FF (NP form feed, new page)| 44 2C 054 &#44; , 76 4C 114 &«#76; L |108 6C 154 &#108; 1

13 D 015 CR (carriage return) 45 2D 055 &#45; - 77 4D 115 &«#77; M |109 6D 155 &#109; n

14 E 016 30 (shift out) 46 ZE 056 &#46; . 78 4E 116 &#78; N |110 6E 156 &#110; n

15 F 017 3I (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 (111 6F 157 &#lll: o

16 10 020 DLE (data link escape) 43 30 060 &#48: 0 80 50 120 &«#80; P (112 70 160 &#llz2; p

17 11 021 DC1l (dewice control 1) 49 31 061l &#49: 1 81 51 121 «#81; 0 (113 71 161 &#113; d

18 12 022 DCZ (device control 2) 50 32 062 &#50; 2 82 52 122 «#82; R (114 72 162 &#ll4; ¢

19 13 023 DC3 (dewice control 3) 51 33 0A3 &#51:; 3 83 53 123 &#583; 5 |115 73 163 &#ll5; s

20 14 024 DC4 (dewvice control 4) 52 34 064 &#52; 4 84 54 124 «#34; T |116 74 164 &#ll6; T

21 15 025 NAK ([(negative acknowledge) 53 35 065 &#53: 5 85 55 125 &#35; U |117 75 165 &#117; u

22 16 026 SYN (synchronous idle) 54 36 066 &#54: 6 86 56 126 &«#86; V (118 76 166 &#118; V¥

23 17 027 ETE (end of trans. block) 55 37 067 &#55:; 7 87 57 127 &«#87: W (119 77 167 &#l19; w

24 18 030 CAN (cancel) 56 38 070 &#56; 8 88 58 130 «#88; X (120 78 170 &#120; X

25 19 031 EM (end of medium) 57 39 071 &«#57:; 9 89 59 131 «#89; Y (121 79 171 &«#l21; ¥

26 1li 032 5UB (substitute) 58 3A 072 &#58; : 90 5 132 &«#90; 2 |122 74 172 &#l22; 2

27 1B 033 ESC (escape) 59 3B 073 &#59; ; 9] 5B 133 &«#91; [ |123 7B 173 &#123; {

28 1C 034 F3 (file separator) 60 3C 074 &«#60; < 92 5C 134 &#92; \ |124 7C 174 &«#l24;

29 1D 035 G35 (group separator) 61 3D 075 &#6l1; = 93 5D 135 &«#93; ] [125 7D 175 &#125; }

30 1E 036 RS (record separator) 62 3E 076 &#62; > 94 5E 136 «#94; *~ |126 7E 176 &#l26; ~

31 1F 037 US [(unit separator) 63 3F 077 &#63; 2 95 S5F 137 &«#95; _ |127 7F 177 &#127; DEL




Some examples of chr and ord in action

O




Because of the the fact that all the upper case letters
occur consecutively in the ASCII table, the
expression ord(ch) - ord("A") has value o for ch=
"A" value 1 for ch = "B", has value 2 for ch = "C", etc.

Similarly, ord(ch)-ord("a") has value o for ch = "a" ,
has value 1 for ch = "b", has value 2 for ch = "¢", etc.



A program to count letter frequencies

O

Notice how ord(ch)-ord(*A") and ord(ch)-ord("a") are used
to index into the list L.




The ord and chr functions can be used to perform
Caeser’s Cipher (Problem 3, HW 7).

Try this: chr(ord("a") + 4)

What does this expression evaluate to?



