
J A N 3 0 T H , 2 0 1 2

A Few versions of the Primality
Testing Program

Algorithmic Idea

�  Generate all “candidate” factors of n, namely
 2, 3, …, n-1

�  For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

�  If a “candidate” factor is found to be a real factor,
then n is composite.

�  If no “candidate” factor is found to be a real factor,
then n is a prime.

Primality Testing: Version 1

Programmer: Sriram Pemmaraju
Date: Jan 30th, 2012
This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.
Version 1

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not

loop to generate and test all possible factors
while factor < n:
 # test if n is evenly divisible by factor
 if (n % factor == 0):
 isPrime = False
 break

 factor = factor + 1

Output
if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

Discussing this code: Boolean variables

�  Boolean variables are quite useful for remembering
situations that occurred in the program, for later
reference.

�  What happens if we get rid of the initialization:
 isPrime = True

�  Could we have used a boolean variable called
isComposite instead?

Discussing the code: The break statement

�  The break statement forces the program to exit out
of the smallest enclosing while-loop (or for-loop).

�  Example:
 n = 10

while n < 20:

if n % 7 == 0:

break

n =n + 1

print n

Discussing the code: Comments in Python

�  The program contains “comments,” i.e., text that is ignored by Python but
serves to help the reader understand the code.

�  These are preceded by the “#” symbol.

�  Documenting code using comments is a critical part of programming.

�  Comments are typically provided:
¡  at the beginning of the program,
¡  at the start of a block of code that performs a particular task, e.g., the while-loop that

generates and tests factors,
¡  to document the purpose of variables, etc.

�  Later we will discuss a different mechanism for commenting a Python
program called documentation strings.

Discussing the code: Basic guidelines for
commenting

�  Comments that contradict the code are worse than no
comments at all!

�  Comments that state the obvious (e.g., # This is a while-
loop) make for unnecessary clutter are also worse than
no comments at all.

�  For now the comments you write should (i) help the
reader understand your algorithm and (ii) help the
reader understand tricky snippets of code.

�  Your intended audience: your classmates, your graders,
yourself a few weeks into the future.

Improving the efficiency of our program

1.  A number n does not have any factors larger than
n/2, except itself. So we could stop generating
candidate factors at n/2.

2.  But, wait we can do much better!
We know √n x √n = n. Hence, if n has a factor larger
than √n, then it has a factor smaller than √n also.

This means that only factors 2, 3,…, floor(√n) need to

be considered.

Example

�  Say n = 123.
�  √123 = 11.090536506409418.

�  So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

�  This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, …, 11.

Primality Testing: Version 2

Programmer: Sriram Pemmaraju
Date: Jan 30th, 2012
This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.
Version 2

import math

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not
factorUpperBound = math.sqrt(n) # the largest possible factor we need to test is sqrt(n)

loop to generate and test all possible factors
while factor <= factorUpperBound:
 # test if n is evenly divisible by factor
 if (n % factor == 0):
 isPrime = False
 break

 factor = factor + 1

Output
if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

How do I find out if a certain math function is part of
the math module in Python?

�  For all matters related to Python
 http://docs.python.org/

is the authoratative source. I visit this website all the time when I
program in Python.

�  Get into the habit of searching this website for answers to all

Python-related questions.

�  This is a good time for you to look over parts of the Python tutorial
(e.g., 3.1.1 Numbers, 3.1.2 Strings, 3.2 First Steps Towards
Programming, 4.1 If statements).

�  Section 9.2 is on the math module and contains a list of math
functions available in the module.

Examples of functions in the math module

�  math.log10(x): returns the logarithm to the base 10
of x.

�  math.pow(x, y): returns x raised to the power of y.

There are many other functions in this module. Play
with these!

