A Few versions of the Primality
Testing Program

O

Generate all “candidate” factors of n, namely

2,9, ..., N-1

For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

If a “candidate” factor is found to be a real factor,
then n is composite.

If no “candidate” factor is found to be a real factor,
then n is a prime.

Programmer: Sriram Pemmaraju

Date: Jan 30th, 2012

This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.

Version 1

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not

loop to generate and test all possible factors
while factor < n:
test if n is evenly divisible by factor
if (n % factor == 0):
isPrime = False
break

factor = factor + 1

Output
if isPrime:

print n, " is a prime."
else:

print n, " is a composite."

Boolean variables are quite useful for remembering
situations that occurred in the program, for later
reference.

What happens if we get rid of the initialization:
iIsPrime = True

Could we have used a boolean variable called
isComposite instead?

Discussing the code: The break statement

O

» The break statement forces the program to exit out
of the smallest enclosing while-loop (or for-loop).

» Example:

The program contains “comments,” i.e., text that is ignored by Python but
serves to help the reader understand the code.

These are preceded by the “#” symbol.
Documenting code using comments is a critical part of programming.

Comments are typically provided:
at the beginning of the program,

at the start of a block of code that performs a particular task, e.g., the while-loop that
generates and tests factors,

to document the purpose of variables, etc.

Later we will discuss a different mechanism for commenting a Python
program called documentation strings.

Comments that contradict the code are worse than no
comments at all!

Comments that state the obvious (e.g., # This is a while-
loop) make for unnecessary clutter are also worse than
no comments at all.

For now the comments you write should (1) help the
reader understand your algorithm and (ii) help the
reader understand tricky snippets of code.

Your intended audience: your classmates, your graders,
yourself a few weeks into the future.

A number n does not have any factors larger than

n/2, except itself. So we could stop generating
candidate factors at n/2.

But, wait we can do much better!

We know vn x vn = n. Hence, if n has a factor larger
than vn, then it has a factor smaller than vn also.

This means that only factors 2, 3,..., floor(v/n) need to
be considered.

Say n = 123.
V123 = 11.090536506409418.

So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, ..., 11.

Programmer: Sriram Pemmaraju

Date: Jan 30th, 2012

This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.

Version 2

import math
n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not
factorUpperBound = math.sqrt(n) # the largest possible factor we need to test is sqrt(n)

loop to generate and test all possible factors
while factor <= factorUpperBound:
test if n is evenly divisible by factor
if (n % factor == 0):
isPrime = False
break

factor = factor + 1

Output
if isPrime:

print n, " is a prime."
else:

print n, " is a composite."

For all matters related to Python

is the authoratative source. I visit this website all the time when I
program in Python.

Get into the habit of searching this website for answers to all
Python-related questions.

This is a good time for you to look over parts of the Python tutorial
(e.g., 3.1.1 Numbers, 3.1.2 Strings, 3.2 First Steps Towards
Programming, 4.1 If statements).

Section 9.2 is on the math module and contains a list of math
functions available in the module.

math.log10(x): returns the logarithm to the base 10
of x.

math.pow(x, y): returns x raised to the power of y.

There are many other functions in this module. Play
with these!

